\[\boxed{\mathbf{523.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\text{ABCD},\ \text{AEFK} - квадраты;\]
\[\text{AB} = \text{AE} = a.\]
\[\mathbf{Найти:}\]
\[S_{\text{AEQD}} - ?\]
\[\mathbf{Решение.}\]
\[1)\ S_{\text{AEQD}} = S_{\text{ACD}} - S_{\text{ECQ}}.\]
\[2)\ S_{\text{ACD}} = \frac{1}{2}\text{AD} \bullet \text{DC} = \frac{1}{2}a \bullet a =\]
\[= \frac{a^{2}}{2}.\]
\[3)\ AC^{2} = AD^{2} + DC^{2} =\]
\[= a^{2} + a^{2} = 2a^{2}\]
\[\text{AC} = a\sqrt{2}.\]
\[4)\ \text{EC} = \text{AC} - \text{AE} = a\sqrt{2} - a =\]
\[= a\left( \sqrt{2} - 1 \right).\]
\[5)\ ⊿\text{ECQ} - прямоугольный\ \]
\[\left( так\ как\ \text{AC}\bot\text{EF} \right):\]
\[\angle\text{ECQ} = 90{^\circ}:2 = 45{^\circ};\]
\[отсюда:\]
\[⊿\text{ECQ} - равнобедренный;\]
\[\text{EQ} = \text{EC}.\]
\[6)\ S_{\text{ECQ}} = \frac{1}{2}\text{QE} \bullet \text{EC} = \frac{1}{2} \bullet EC^{2}\]
\[S_{\text{ECQ}} = \frac{1}{2}a^{2}\left( \sqrt{2} - 1 \right)^{2} =\]
\[= \frac{1}{2}a^{2}\left( 2 - 2\sqrt{2} + 1 \right) =\]
\[= \frac{1}{2}a^{2}\left( 3 - 2\sqrt{2} \right).\]
\[7)\ S_{\text{AEQD}} = \frac{a^{2}}{2} - \frac{a^{2}}{2}\left( 3 - 2\sqrt{2} \right) =\]
\[= \frac{a^{2}}{2}\left( 1 - 3 + 2\sqrt{2} \right) =\]
\[= \frac{a^{2}}{2}\left( 2\sqrt{2} - 2 \right) = a^{2}\left( \sqrt{2} - 1 \right).\]
\[Ответ:a^{2}\left( \sqrt{2} - 1 \right).\]
\[\boxed{\mathbf{523.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[D \in AC;\]
\[ED \parallel BC\ и\ DF \parallel AB.\]
\[\mathbf{Доказать:}\]
\[P_{\text{BFDE}} = AB + BC.\]
\[\mathbf{Доказательство.}\]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[AB = BC;\ \]
\[\angle A = \angle C.\]
\[2)\ DF \parallel AB\ и\ AC - секущая:\]
\[\angle A = \angle FDC\ \]
\[(как\ соответственные);\]
\[\mathrm{\Delta}DFC - равнобедренный;\]
\[FC = FD.\]
\[3)\ FD \parallel EB\ и\ BF \parallel ED:\]
\[BFDE - параллелограмм\ \]
\[(по\ определению);\]
\[FD = BE;BF = ED\ \]
\[(по\ свойству\ параллелограмма)\text{.\ }\]
\[4)\ BC \parallel ED\ и\ AC - секущая:\]
\[\angle C = \angle EDA\ \]
\[(как\ соответственные);\]
\[\mathrm{\Delta}AED - равнобедренный;\]
\[AE = ED.\]
\[5)\ P_{\text{BFDE}} =\]
\[= ED + BF + EB + DF =\]
\[= 2DF + 2BF.\]
\[6)\ AB = AE + EB;\]
\[BC = BF + FC:\]
\[P_{\text{BFDE}} = ED + EB + BF + FD =\]
\[= AE + EB + BF + FC\]
\[P_{\text{BEFD}} = AB + BC.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]