\[\boxed{\mathbf{310.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1}\]
\[BH,BH_{1} - высоты.\]
\[\mathbf{Доказать:}\]
\[BH = B_{1}H_{1}.\]
\[\mathbf{Доказательство.}\]
\[1)\ \mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1}\ \]
\[(по\ условию):\]
\[\angle A = \angle A_{1};\ \ AB = A_{1}B_{1} - по\ \]
\[свойству\ равных\ \]
\[треугольников.\]
\[2)\ Рассмотрим\ \mathrm{\Delta}\text{ABH\ }и\ \]
\[\mathrm{\Delta}A_{1}B_{1}H_{1} - прямоугольные:\]
\[AB = A_{1}B_{1}\ (см.\ пункт\ 1);\ \]
\[\angle A = \angle A_{1}\ (см.\ пункт\ 1);\]
\[\mathrm{\Delta}ABH = \mathrm{\Delta}A_{1}B_{1}H_{1}\ \]
\[(по\ гипотенузе\ и\ острому\ углу).\]
\[3)\ По\ свойству\ равных\ \]
\[треугольников:\]
\[BH = B_{1}H_{1}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{310.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[AH\bot a;\]
\[AM_{1} = AM_{2}.\]
\[\mathbf{Доказать:}\]
\[HM_{1} = HM_{2}.\]
\[\mathbf{Доказательство.}\]
\[\ Рассмотрим\ \mathrm{\Delta}M_{1}\text{AH\ }и\ \mathrm{\Delta}M_{2}AH - прямоугольные:\]
\[AH - общий\ катет;\ \]
\[\angle\text{AH}M_{1} = \angle AHM_{2} = 90{^\circ}\ (так\ как\ AH\bot a);\]
\[AM_{1} = AM_{2}\ (по\ условию).\]
\[\mathrm{\Delta}M_{1}AH = \mathrm{\Delta}M_{2}\text{AH\ }(по\ двум\ катетам).\]
\[По\ свойству\ равных\ треугольников:\]
\[HM_{1} = HM_{2}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\ Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[AH\bot a;\]
\[AM_{1} < AM_{2}.\]
\[\mathbf{Доказать:}\]
\[HM_{1} < HM_{2}.\]
\[\mathbf{Доказательство.}\]
\[1)\ Рассмотрим\ \mathrm{\Delta}AHM_{1} - прямоугольный:\]
\[HM_{1} = \sqrt{\left( AM_{1} \right)^{2} - AH^{2}}\ (по\ теореме\ Пифагора).\]
\[2)\ Рассмотрим\ \mathrm{\Delta}AHM_{2} - прямоугольный:\]
\[HM_{2} = \sqrt{\left( AM_{2} \right)^{2} - AH^{2}}\ (по\ теореме\ Пифагора).\]
\[3)\ Так\ как\ AM_{1} < AM_{2}\ (по\ условию):\]
\[HM_{1} < HM_{1}\text{.\ }\]
\[Что\ и\ требовалось\ доказать.\]