\[\boxed{\mathbf{279.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[AA_{1}\bot a;BB_{1}\bot a;\]
\[CC_{1}\bot a;\]
\[AA_{1} = BB_{1} = CC_{1}.\]
\[\mathbf{Доказать:}\]
\[A \in b;\ \ B \in b;\ \ C \in b.\]
\[\mathbf{Доказательство.}\]
\[1)\ Через\ точку\ A\ проведем\ \]
\[прямую\ b:\ \]
\[2)\ Все\ точки\ b \parallel a\ \]
\[равноудалены\ от\ точек\ \]
\[прямой\ \text{a.}\]
\[3)\ Докажем,\ что\ \text{B\ }и\ C \in b.\]
\[Предположим,\ что\ B\ и\ C \notin b,\ \]
\[тогда\ расстояние\ от\]
\[B\ до\ a\ и\ \text{C\ }до\ \text{a\ }будет\ больше\ \]
\[или\ меньше,\ чем\ h = AA_{1},\ что\ \]
\[противоречит\ условию\ задачи.\]
\[4)\ Следовательно:\ A,B,C \in b.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{279.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[AC\bot a;\]
\[AB - наклонная;\]
\[AC + AB = 17\ см;\]
\[AB - AC = 1\ см.\]
\[\mathbf{Найти:}\]
\[AC - ?\]
\[\mathbf{Решение.}\]
\[1)\ Пусть\ AC = x:\]
\[AB - x = 1\]
\[AB = x + 1.\]
\[2)\ x + x + 1 = 17\]
\[2x = 17 - 1\]
\[2x = 16\]
\[x = \frac{16}{2}\]
\[x = 8.\]
\[3)\ AC = 8\ см.\]
\[\mathbf{Ответ:}AC = 8\mathbf{\ }\mathbf{см}\mathbf{.}\]