\[\boxed{\mathbf{1327.еуроки - ответы\ на\ пятёрку}}\]
\[\mathbf{Дано:}\]
\[окружность\ (O;r);\]
\[AB - диаметр;\]
\[AB\bot CD;\]
\[AB \cap CD = E.\]
\[\mathbf{Доказать:}\]
\[CE = \sqrt{AE \bullet EB}.\]
\[\mathbf{Доказательство.}\]
\[1)\ CO = OD = r:\]
\[\mathrm{\Delta}COD - равнобедренный\ \]
\[(по\ определению).\]
\[2)\ AB\bot CD:\]
\[OE - высота\ в\ \mathrm{\Delta}COD;\]
\[OE - медиана.\]
\[Отсюда:\ \]
\[CE = ED.\]
\[3)\ AE \bullet EB =\]
\[= CE \bullet ED\ (по\ свойству\ хорд):\]
\[AE \bullet EB = CE^{2}\]
\[CE = \sqrt{AE \bullet EB}.\]
\[Что\ и\ требовалось\ доказать.\]