\[\boxed{\mathbf{1264.ОК\ ГДЗ - домашка\ н}а\ 5}\]
\[Дано:\]
\[(x - 1)^{2} + (y - 2)^{2} = 4;\ \]
\[x^{2} + y^{2} = 1.\]
\[Найти:\]
\[точки\ пересечения\ и\ хорду.\]
\[Решение.\]
\[1)\ Разность\ уравнений:\]
\[(x - 1)^{2} + (y - 2)^{2} - \left( x^{2} + y^{2} \right) =\]
\[= 4 - 1\]
\[- 2x - 4y + 2 = 0\]
\[y = \frac{- x + 1}{2}.\]
\[3)\ Из\ второго\ уравнения:\]
\[x^{2} + \left( \frac{- x + 1}{2} \right)^{2} = 1\]
\[4x^{2} + (1 - x)^{2} = 4\]
\[4x^{2} + x^{2} - 2x + 1 = 4\]
\[5x^{2} - 2x - 3 = 0\]
\[(x - 1)(5x + 3) = 0.\]
\[Подставим:x_{1} = - \frac{3}{5};\ \ x_{2} = 1.\]
\[\left\{ \begin{matrix} x_{1} = - \frac{3}{5}\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ y_{1} = \frac{\frac{3}{5} + 1}{2} = \frac{4}{5} \\ \end{matrix} \right.\ \ \ \ \ и\ \ \ \ \ \ \]
\[\left\{ \begin{matrix} x_{2} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y_{2} = \frac{- 1 + 1}{2} = 0 \\ \end{matrix} \right.\ \]
\[Получаем:\]
\[A\left( - \frac{3}{5};\frac{4}{5} \right);\text{\ B}(1;0).\]
\[AB = \sqrt{\left( 1 + \frac{3}{5} \right)^{2} + \left( 0 - \frac{4}{5} \right)^{2}} =\]
\[= \frac{\sqrt{8^{2} + 4^{2}}}{5} = \frac{4}{5}\sqrt{2^{2} + 1} = \frac{4\sqrt{5}}{5}.\]
\[Ответ:\left( - \frac{3}{5};\frac{4}{5} \right);\ \ (1;0);\ \ \ \frac{4\sqrt{5}}{5}.\]