Решебник по геометрии 7 класс Атанасян ФГОС Задание 1089

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1089

Выбери издание
Геометрия 7 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 7 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 7 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{1089.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[\mathrm{\Delta}ABC;\ \]

\[окружность\ (O;R);\]

\[AB = BC = AC;\]

\[P_{\text{ABC}} = 18\ см;\]

\[FKNE - квадрат.\]

\[\mathbf{Найти:}\]

\[FK - ?\]

\[\mathbf{Решение.}\]

\[1)\ \mathrm{\Delta}ABC - равносторонний:\]

\[AB = \frac{18}{3} = 6\ см.\]

\[2)\ R = \frac{1}{2} \bullet AB\ :\sin{60{^\circ}} =\]

\[= \frac{1}{2} \bullet 6 \bullet \frac{2}{\sqrt{3}} = 2\sqrt{3}\ см.\]

\[3)\ R = \frac{a\sqrt{2}}{2}\]

\[FK = \frac{2R}{\sqrt{2}}\]

\[FK = \frac{2 \bullet 2\sqrt{3}}{\sqrt{2}} = \frac{4\sqrt{3}}{\sqrt{2}} = \frac{4\sqrt{6}}{2} =\]

\[= 2\sqrt{6}\ см.\]

\[Ответ:\ 2\sqrt{6}\ см.\]

Издание 2
фгос Геометрия 7 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{1089.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[Окружность\ (O;R);\]

\[A,B,C \in (O;R);\]

\[\textbf{а)}\ A(1; - 4);B(4;5);C(3; - 2);\]

\[\textbf{б)}\ A(3; - 7);B(8; - 2);C(6;2).\]

\[\mathbf{Найти:}\]

\[уравнение\ окружности.\]

\[\mathbf{Решение.}\]

\[\textbf{а)}\ 1)\ AO =\]

\[= \sqrt{(1 - x)^{2} + ( - 4 - y)^{2}};\]

\[BO = \sqrt{(4 - x)^{2} + (5 - y)^{2}};\]

\[CO = \sqrt{(3 - x)^{2} + ( - 2 - y)^{2}}.\]

\[2)\ AO^{2} = BO^{2}:\]

\[(1 - x)^{2} + ( - 4 - y)^{2} =\]

\[= (4 - x)^{2} + (5 - y)^{2}\]

\[1 - 2x + x^{2} + 16 + 8y + y^{2} =\]

\[= 16 - 8x + x^{2} + 25 - 10y + y^{2}\]

\[6x + 18y - 24 = 0\]

\[x + 3y - 4 = 0\]

\[x = 4 - 3y.\]

\[BO^{2} = CO^{2}:\]

\[(4 - x)^{2} + (5 - y)^{2} =\]

\[= (3 - x)^{2} + ( - 2 - y)^{2}\]

\[16 - 8x + x^{2} + 25 - 10y + y^{2} =\]

\[= 9 - 6x + x^{2} + 4 + 4y + y^{2}\]

\[- 8x - 10y + 41 + 6x - 4y - 13 = 0\]

\[- 14y - 2x + 28 = 0\]

\[7y + x - 14 = 0\]

\[x = 14 - 7y.\]

\[3)\ 14 - 7y = 4 - 3y\]

\[4y = 10\]

\[y = \frac{5}{2} = 2,5;\]

\[x = 4 - 3 \bullet 2,5 = 4 - 7,5 = - 3,5;\]

\[O( - 3,5;2,5).\]

\[4)\ R =\]

\[= \sqrt{(4 + 3,5)^{2} + (5 - 2,5)^{2}} =\]

\[= \sqrt{\frac{225}{4} + \frac{25}{4}} = \sqrt{\frac{250}{4}} =\]

\[= \sqrt{\frac{125}{2}} = \sqrt{62,5}.\]

\[5)\ Уравнение\ окружности:\]

\[(x + 3,5)^{2} + (y - 2,5)^{2} = 62,5.\]

\[\textbf{б)}\ 1)\ AO =\]

\[= \sqrt{(3 - x)^{2} + ( - 7 - y)^{2}};\]

\[BO = \sqrt{(8 - x)^{2} + ( - 2 - y)^{2}};\]

\[CO = \sqrt{(6 - x)^{2} + (2 - y)^{2}}.\]

\[2)\ AO^{2} = BO^{2}:\]

\[(3 - x)^{2} + ( - 7 - y)^{2} =\]

\[= (8 - x)^{2} + ( - 2 - y)^{2}\]

\[9 - 6x + x^{2} + 49 + 14y + y^{2} =\]

\[= 64 - 16x + x^{2} + 4 + 4y + y^{2}\]

\[10x + 10y - 10 = 0\]

\[x + y - 1 = 0\]

\[x = 1 - y.\]

\[BO^{2} = CO^{2}:\]

\[(8 - x)^{2} + ( - 2 - y)^{2} =\]

\[= (6 - x)^{2} + (2 - y)^{2}\]

\[64 - 16x + x^{2} + 4 + 4y + y^{2} =\]

\[= 36 - 12x + x^{2} + 4 - 4y + y^{2}\]

\[8y - 4x + 28 = 0\]

\[2y - x + 7 = 0\]

\[x = 2y + 7.\]

\[3)\ 2y + 7 = 1 - y\]

\[3y = - 6\]

\[y = - 2;\]

\[x = 2 \bullet ( - 2) + 7 = - 4 + 7 = 3;\]

\[O(3; - 2).\]

\[4)\ R = \sqrt{(6 - 3)^{2} + (2 + 2)^{2}} =\]

\[= \sqrt{9 + 16} = \sqrt{25} = 5.\]

\[5)\ Уравнение\ окружности:\]

\[(x - 3)^{2} + (y + 2)^{2} = 25.\]

\[Ответ:\]

\[\textbf{а)}\ (x + 3,5)^{2} + (y - 2,5)^{2} =\]

\[= 62,5;\]

\[\textbf{б)}\ (x - 3)^{2} + (y + 2)^{2} = 25.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам