\[\boxed{\mathbf{418}.еуроки - ответы\ на\ пятёрку}\]
\[Рисунок\ по\ условию\ задачи:\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[AB = BC;\]
\[E \in AB;\]
\[F \in BC;\]
\[AC = AF = EF = BE.\]
\[Найти:\]
\[\angle A;\ \angle B;\ \angle C.\]
\[Решение.\]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[\angle A = \angle C = x;\]
\[\angle A + \angle B + \angle C = 180{^\circ}\]
\[\angle B = 180{^\circ} - \angle A - \angle C =\]
\[= 180{^\circ} - x - x = 180{^\circ} - 2x.\]
\[2)\ \mathrm{\Delta}FAC - равнобедренный\ \]
\[(AC = AF):\]
\[\angle C = \angle AFC = x;\]
\[\angle C + \angle AFC + \angle FAC = 180{^\circ}\]
\[\angle FAC = 180 - x - x =\]
\[= 180{^\circ} - 2x.\]
\[3)\ \angle A = x = \angle EAF + \angle FAC\]
\[x = \angle EAF + 180 - 2x\]
\[\angle EAF = x + 2x - 180 =\]
\[= 3x - 180{^\circ}.\]
\[\angle EAF + \angle AEF + \angle EFA = 180{^\circ}\]
\[\angle EFA =\]
\[= 180 - (3x - 180 + 3x - 180) =\]
\[= 540{^\circ} - 6x.\]
\[5)\ \mathrm{\Delta}BEF - равнобедренный\ \]
\[(BE = EF):\]
\[\angle EBF = \angle BFE = 180{^\circ} - 2x.\]
\[6)\ \angle CFB = 180{^\circ} -\]
\[развернутый.\]
\[\angle CFB =\]
\[= \angle AFC + \angle AFE + \angle EFB =\]
\[= 180{^\circ}\]
\[x + 540 - 6x + 180 - 2x = 180\]
\[7x = 540{^\circ}\]
\[x = \frac{540}{7} = 77\frac{1}{7}{^\circ}.\]
\[\angle A = \angle C = 77\frac{1}{7}{^\circ}.\]
\[7)\ \angle B = 180 - 2 \cdot \frac{540}{7} = 25\frac{5}{7}{^\circ}.\]
\[Ответ:\ \angle A = \angle C = 77\frac{1}{7}{^\circ};\ \ \]
\[\angle B = 25\frac{5}{7}{^\circ}.\]