\[Схематический\ рисунок.\]
\[Дано:\ \ \]
\[OD - биссектриса\ \angle AOB;\]
\[\angle BOD = \angle BOC - 18{^\circ}.\]
\[Найти:\]
\[\angle AOB;\ \angle BOC.\]
\[Решение.\]
\[1)\ \angle AOB = \angle AOD + \angle BOD\]
\[\angle AOB = \angle BOD + \angle BOD\]
\[\angle AOB = 2\angle BOD.\]
\[2)\ \angle AOB\ и\ \angle BOC\ смежные:\]
\[\angle AOB + \angle BOC = 180{^\circ}\]
\[2\angle BOD + \angle BOC = 180{^\circ}\]
\[2(\angle BOC - 18{^\circ}) + \angle BOC = 180{^\circ}\]
\[2\angle BOC - 36{^\circ} + \angle BOC = 180{^\circ}\]
\[3\angle BOC = 216{^\circ}\]
\[\angle BOC = 72{^\circ}.\]
\[\angle BOD = 72{^\circ} - 18{^\circ} = 54{^\circ}.\]
\[\angle AOB = 2 \bullet 54{^\circ} = 108{^\circ}.\]
\[Ответ:\ \ \angle AOB = 108{^\circ};\ \angle BOC = 72{^\circ}.\]