\[Схематический\ рисунок.\]
\[Дано:\ \ \]
\[OF - биссектриса\ \angle MKE;\]
\[\angle FKE = \angle PKE + 24{^\circ}.\]
\[Найти:\]
\[\angle MKE;\ \angle PKE.\]
\[Решение.\]
\[1)\ \angle MKE = \angle MKF + \angle FKE\]
\[\angle MKE = \angle FKE + \angle FKE\]
\[\angle MKE = 2\angle FKE.\]
\[2)\ \angle\text{MKE}\ и\ \angle PKE\ смежные:\]
\[\angle MKE + \angle PKE = 180{^\circ}\]
\[2\angle FKE + \angle PKE = 180{^\circ}\]
\[2(\angle PKE + 24{^\circ}) + \angle PKE = 180{^\circ}\]
\[2\angle PKE + 48{^\circ} + \angle PKE = 180{^\circ}\]
\[3\angle PKE = 132{^\circ}\]
\[\angle PKE = 44{^\circ}.\]
\[\angle FKE = 44{^\circ} + 24{^\circ} = 68{^\circ}.\]
\[\angle MKE = 2 \bullet 68{^\circ} = 136{^\circ}.\]
\[Ответ:\ \ \angle MKE = 136{^\circ};\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \angle PKE = 44{^\circ}.\]