\[Схематический\ рисунок.\]
\[Дано:\]
\[\angle ABF = 80{^\circ};\]
\[\angle ABD = 30{^\circ};\]
\[BM - биссектриса\ \angle DBF;\]
\[BN - биссектриса\ \angle FBC.\]
\[Найти:\]
\[\angle MBN.\]
\[Решение.\]
\[1)\ \angle ABF = \angle ABD + \angle DBF\]
\[80{^\circ} = 30{^\circ} + \angle DBF\]
\[\angle DBF = 50{^\circ}.\]
\[2)\ \angle DBF = \angle DBM + \angle MBF\]
\[\angle DBF = \angle MBF + \angle MBF\]
\[2\angle MBF = 50{^\circ}\ \ \ \]
\[\angle MBF = 25{^\circ}.\]
\[3)\ \angle ABF\ и\ \angle FBC\ смежные:\]
\[\angle ABF + \angle FBC = 180{^\circ}\]
\[80{^\circ} + \angle FBC = 180{^\circ}\]
\[\angle FBC = 100{^\circ}.\]
\[4)\ \angle FBC = \angle FBN + \angle NBC\]
\[\angle FBC = \angle FBN + \angle FBN\]
\[2\angle FBN = 100{^\circ}\ \ \ \]
\[\angle FBN = 50{^\circ}.\]
\[5)\ \angle MBN = \angle MBF + \angle FBN\]
\[\angle MBN = 25{^\circ} + 50{^\circ} = 75{^\circ}.\]
\[Ответ:\ \ 75{^\circ}.\]