\[\boxed{\mathbf{868.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[y = \frac{k}{x};\]
\[k > 0.\]
\[Найти:\]
\[e;\ \]
\[x = \frac{a^{2}}{c}.\]
\[Решение.\]
\[1)\ Зададим\ ось\ координат\ \]
\[Ox^{'}y^{'}поворотом\ осей\ Ox\ и\ \text{Oy\ }\]
\[на\ 45{^\circ}\ против\ часовой\ стрелки:\]
\[x^{'} = \sin{45{^\circ}} \bullet (x + y) =\]
\[= \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y;\]
\[y^{'} = \sin{45{^\circ}} \bullet (x - y) =\]
\[= \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}\text{y.}\]
\[2)\ Значит:\ \]
\[x = \sqrt{2}\left( x^{'} + y^{'} \right);\text{\ \ }\]
\[y = \sqrt{2}\left( x^{'} - y^{'} \right).\]
\[3)\ Уравнение\ гиперболы\ в\ \]
\[координатах\ Ox^{'}y^{'}:\]
\[y = \frac{k}{x}\text{\ \ }\]
\[k = xy = 2\left( x^{'2} - y^{'2} \right)\]
\[\frac{x^{'2}}{\frac{k}{2}} - \frac{y^{'2}}{\frac{k}{2}} = 1\ \]
\[a^{2} = \frac{k}{2};\ \]
\[b^{2} = \ c^{2} - a^{2} = \frac{k}{2};\ \]
\[c^{2} = k.\]
\[4)\ Эксцентриситет\ равен:\ \]
\[e = \frac{c}{a} = \frac{\sqrt{k}}{\sqrt{\frac{k}{2}}} = \sqrt{2}.\]
\[5)\ Уравнения\ директрис:\]
\[x^{'} = \frac{a^{2}}{c} = \frac{k}{2\sqrt{k}} = \frac{\sqrt{k}}{2};\ \ \text{\ \ }\]
\[x^{'} = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}\text{y.}\]
\[Отсюда:\ \]
\[\frac{y}{\sqrt{2}} + \frac{x}{\sqrt{2}} - \frac{\sqrt{k}}{2} = 0\]
\[y + x - \sqrt{\frac{k}{2}} = 0;\]
\[y + x + \sqrt{\frac{k}{2}} = 0.\]
\[\mathbf{Ответ}:\ \ e = \sqrt{2};\ \ \]
\[y + x - \sqrt{\frac{k}{2}} = 0;\ \ y + x + \sqrt{\frac{k}{2}} = 0.\]