\[\boxed{\mathbf{862.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[\mathrm{\Delta}ABC;\ \ \]
\[C_{1} \in AB;\ \ \]
\[B_{1} \in AC;\ \ \]
\[A_{1} \in BC.\]
\[Доказать:\ \ \]
\[\textbf{а)}\ прямые\ AA_{1},BB_{1},CC_{1}\ \]
\[пересекаются\ в\ одной\ точке\ \]
\[только\ тогда,\ когда\ \]
\[\frac{\sin{\angle ACC_{1}}}{\sin{\angle C_{1}\text{CB}}} \bullet \frac{\sin{\angle BAA_{1}}}{\sin{\angle A_{1}\text{AC}}} \bullet \frac{\sin{\angle CBB_{1}}}{\sin{\angle B_{1}\text{BA}}} =\]
\[= 1;\]
\[\textbf{б)}\ для\ любой\ точки\ O,\ не\ \]
\[лежащей\ на\ AB,BC\ и\ CA,\ \]
\[выполняется\ равенство\ \]
\[\frac{\sin{\angle AOC_{1}}}{\sin{\angle C_{1}\text{OB}}} \bullet \frac{\sin{\angle BOA_{1}}}{\sin{\angle A_{1}\text{OC}}} \bullet \frac{\sin{\angle COB_{1}}}{\sin{\angle B_{1}\text{OA}}} =\]
\[= 1.\]
\[Доказательство.\]
\[\textbf{а)}\]
\[1)\ \ Пусть\ \angle AC_{1}C = a:\]
\[\angle CC_{1}B = 180{^\circ} - a\ \]
\[(как\ смежный).\]
\[2)\ По\ теореме\ синусов\ для\ \]
\[\mathrm{\Delta}CC_{1}\text{B\ }и\ \ \mathrm{\Delta}AC_{1}C:\ \]
\[\frac{AC_{1}}{\sin{\angle C_{1}\text{CB}}} = \frac{\text{AC}}{\sin a};\ \ \]
\[\frac{BC_{1}}{\sin{\angle C_{1}\text{CB}}} = \frac{\text{BC}}{\sin(180{^\circ} - a)} =\]
\[= \frac{\text{BC}}{\sin a}.\]
\[Отсюда:\]
\[\frac{AC_{1}}{BC_{1}} = \frac{\sin{\angle ACC_{1}}}{\sin{\angle C_{1}\text{CB}}} \bullet \frac{\text{AC}}{\text{BC}}.\]
\[3)\ Аналогично\ для\ \mathrm{\Delta}\text{BA}A_{1}\ \ и\ \ \]
\[\mathrm{\Delta}A_{1}AC;\ \ \mathrm{\Delta}ABB_{1}\ и\ \mathrm{\Delta}ACC_{1}:\]
\[\frac{BA_{1}}{CA_{1}} = \frac{\sin{\angle BAA_{1}}}{\sin{\angle A_{1}\text{AC}}} \bullet \frac{\text{AB}}{\text{AC}};\ \ \]
\[\frac{CB_{1}}{AB_{1}} = \frac{\sin{\angle CBB_{1}}}{\sin{\angle B_{1}\text{BA}}} \bullet \frac{\text{BC}}{\text{AB}}.\]
\[4)\ Таким\ образом:\]
\[\frac{AC_{1}}{C_{1}B} \bullet \frac{BA_{1}}{CA_{1}} \bullet \frac{CB_{1}}{AB_{1}} =\]
\[= \frac{\sin{\angle ACC_{1}}}{\sin{\angle C_{1}\text{CB}}} \bullet \frac{\sin{\angle BAA_{1}}}{\sin{\angle A_{1}\text{AC}}} \bullet \frac{\sin{\angle CBB_{1}}}{\sin{\angle B_{1}\text{BA}}}.\]
\[Значит,\ по\ теореме\ Чевы:\ \]
\[прямые\ AA_{1},BB_{1},CC_{1}\ \]
\[пересекаются\ в\ одной\ точке\ \]
\[только\ тогда,\ \]
\[когда\ данное\ выражение\ \]
\[равно\ 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\]
\[1)\ Пусть\ дана\ любая\ точка\ O,\ \]
\[не\ лежащая\ на\ сторонах\ \mathrm{\Delta}ABC:\]
\[\angle AC_{1}O = a;\ \]
\[\angle BC_{1}O = 180{^\circ} - a\ \]
\[(как\ смежный).\]
\[2)\ По\ теореме\ синусов\ для\ \]
\[\mathrm{\Delta}\text{AO}C_{1}\ и\ \mathrm{\Delta}\text{BO}C_{1}:\]
\[\frac{AC_{1}}{\sin{\angle AOC_{1}}} =\]
\[= \frac{\text{AO}}{\sin a}\text{\ \ }и\ \frac{BC_{1}}{\sin{\angle C_{1}\text{OB}}} =\]
\[= \frac{\text{BO}}{\sin(180{^\circ} - a)} = \frac{\text{BO}}{\sin a}\]
\[\frac{AC_{1}}{BC_{1}} = \frac{\sin{\angle AOC_{1}}}{\sin{\angle C_{1}\text{OB}}} \bullet \frac{\text{AO}}{\text{BO}}.\]
\[3)\ Аналогично\ для\ \mathrm{\Delta}\text{BO}A_{1}\ и\ \]
\[\mathrm{\Delta}COA_{1};\ \ \mathrm{\Delta}AOB_{1}\ и\ \mathrm{\Delta}COB_{1}:\]
\[\frac{BA_{1}}{CA_{1}} = \frac{\sin{\angle BOA_{1}}}{\sin{\angle A_{1}\text{OC}}} \bullet \frac{\text{BO}}{\text{CO}};\ \ \ \]
\[\frac{CB_{1}}{AB_{1}} = \frac{\sin{\angle COB_{1}}}{\sin{\angle B_{1}\text{OA}}} \bullet \frac{\text{CO}}{\text{AO}}.\]
\[4)\ Таким\ образом:\]
\[\frac{AC_{1}}{BC_{1}} \bullet \frac{BA_{1}}{CA_{1}} \bullet \frac{CB_{1}}{AB_{1}} =\]
\[= \frac{\sin{\angle AOC_{1}}}{\sin{\angle C_{1}\text{OB}}} \bullet \frac{\sin{\angle BOA_{1}}}{\sin{\angle A_{1}\text{OC}}} \bullet \frac{\sin{\angle COB_{1}}}{\sin{\angle B_{1}\text{OA}}}.\]
\[Значит,\ по\ теореме\ Чевы:\ \]
\[прямые\ AA_{1},BB_{1},CC_{1}\ \]
\[пересекаются\ в\ одной\ точке\ \]
\[только\ тогда,\ когда\ данное\ \]
\[выражение\ равно\ 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[Параграф\ 4.\ Эллипс,\ гипербола\ и\ парабола\]