\[\boxed{\mathbf{759.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\angle\left( \text{CABD} \right) = \varphi < 90{^\circ};\]
\[AC\bot AB;\]
\[\angle DAB = \theta.\]
\[Найти:\]
\[\cos{\angle CAD}.\]
\[Решение.\]
\[1)\ Из\ точки\ A\ проведем\ \]
\[OA\bot AB:\]
\[\angle CAO = \text{φ.}\]
\[2)\ Отложим\ AC = AO.\]
\[Проведем\ отрезок\ CO;из\ точки\ \]
\[\text{O\ }проведем\ луч,\ пересекающий\ \]
\[луч\ \text{AD}\]
\[в\ точке\ D:\ \ \ OD \parallel AB.\]
\[3)\ Так\ как\ OD \parallel AB;OA\bot AB:\]
\[OD\bot OA.\]
\[4)\ По\ теореме\ о\ трех\ \]
\[перпендикулярах:\]
\[CO\bot OD.\]
\[5)\ Пусть\ AD = a.\]
\[AO = a \cdot \sin\theta;\]
\[OD = a \cdot \cos\theta.\]
\[6)\ В\ треугольнике\ OAC\ \]
\[(по\ теореме\ косинусов):\]
\[CO^{2} =\]
\[= OA^{2} + AC^{2} - 2AC \cdot AO \cdot \cos\varphi\]
\[= 2a^{2} \cdot \sin^{2}\theta \cdot \left( 1 - cos^{2}\varphi \right).\]
\[7)\ ⊿COD - прямоугольный:\]
\[CD^{2} = OC^{2} + OD^{2}\]
\[CD^{2} =\]
\[= 2a^{2} \cdot \sin^{2}\theta \cdot \left( 1 - cos^{2}\varphi \right) + a^{2}\text{co}s^{2}\text{θ.}\]
\[8)\ По\ теореме\ косинусов\ в\ \]
\[⊿\text{CAD\ }(\angle CAD = x):\]
\[CD^{2} =\]
\[= CA^{2} + AD^{2} - 2 \cdot CA \cdot AD \cdot \cos x\]
\[= a^{2} \cdot \sin^{2}\theta + a^{2} - 2a^{2}\sin\theta \cdot \cos x\]
\[2sin^{2}\theta - 2sin^{2}\theta\cos\varphi + cos^{2}\theta =\]
\[= sin^{2}\theta + 1 - 2\sin\theta\cos x\]
\[\text{si}n^{2}\theta - 2sin^{2}\theta\cos\varphi + cos^{2}\theta - 1 =\]
\[= - 2\sin\theta\cos x\]
\[1 - 2sin^{2}\theta\cos\varphi - 1 =\]
\[= - 2\sin\theta\cos x\]
\[2sin^{2}\theta\cos\varphi = 2\sin\theta\cos x\]
\[\sin\theta \neq 0:\]
\[\sin\theta\cos\varphi = \cos x;\]
\[\cos{\angle CAD} = \sin\theta\cos\varphi.\]
\[Ответ:\ \sin\theta\cos\varphi.\]