\[\boxed{\mathbf{551.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[шар\ O;\]
\[вписанный\ конус\ (r;H).\]
\[Найти:\]
\[S_{шара};\]
\[V_{шара}.\]
\[Решение.\]
\[1)\ CH = H - высота\ конуса;\ \ \]
\[OB = OA = OC = R_{шара};\]
\[AH = HB = r - радиус\ \]
\[основания\ конуса.\]
\[2)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[AC = BC.\]
\[3)\ \mathrm{\Delta}ACH - прямоугольный:\]
\[AC^{2} = CH^{2} + AH^{2} = \sqrt{H^{2} + r^{2}}.\]
\[4)\ Радиус\ шара:\]
\[S_{\text{ABC}} = \frac{1}{2} \bullet AB \bullet CH = \frac{1}{2} \bullet 2r \bullet H =\]
\[= r \bullet H;\]
\[R_{шара} = \frac{AB \bullet BC \bullet CA}{4S_{\text{ABC}}} =\]
\[= \frac{\left( \sqrt{H^{2} + r^{2}} \right)^{2} \bullet 2r}{4rH} = \frac{H^{2} + r^{2}}{2H}.\]
\[5)\ Площадь\ поверхности\ шара:\]
\[S_{шара} = 4\pi R^{2} =\]
\[= 4\pi \bullet \left( \frac{H^{2} + r^{2}}{2H} \right)^{2} =\]
\[= \frac{\pi}{H^{2}} \bullet \left( H^{2} + r^{2} \right)^{2}.\]
\[6)\ V_{шара} = \frac{4}{3}\pi R^{3} =\]
\[= \frac{4\pi}{3} \bullet \left( \frac{H^{2} + r^{2}}{2H} \right)^{3} =\]
\[= \frac{\pi}{6H^{3}} \bullet \left( H^{2} + r^{2} \right)^{3}.\]
\[\mathbf{Отв}ет:\ \ S_{шара} = \frac{\pi}{H^{2}} \bullet \left( H^{2} + r^{2} \right)^{2};\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }V_{шара} = \frac{\pi}{6H^{3}} \bullet \left( H^{2} + r^{2} \right)^{3}.\]