\[\boxed{\mathbf{518.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[S_{1} = 6\ дм^{2};\]
\[S_{2} = 12\ дм^{2};\]
\[S_{3} = 18\ дм^{2}.\]
\[Найти:\]
\[V(S);\ \text{V.}\]
\[Решение.\]
\[1)\ Площади\ боковых\ \]
\[поверхностей\ \]
\[параллелепипеда:\]
\[S_{1} = ac;\ \ S_{2} = cb;\ \ S_{3} = ab.\]
\[Отсюда:\]
\[S_{1} \bullet S_{2} \bullet S_{3} = ac \bullet cb \bullet ab =\]
\[= a^{2}c^{2}b^{2}.\]
\[2)\ Объем\ параллелепипеда:\]
\[V = a \bullet b \bullet c = \sqrt{S_{1} \bullet S_{2} \bullet S_{3}} =\]
\[= \sqrt{6 \bullet 12 \bullet 18} = \sqrt{1296} =\]
\[= 36\ дм^{3}.\]
\[Ответ:\ \ V = \sqrt{S_{1} \bullet S_{2} \bullet S_{3}} =\]
\[= 36\ дм^{3}.\]