\[\boxed{\mathbf{509.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[O_{1};\ O_{2} - шары;\]
\[R_{1} = R_{2}.\]
\[Найти:\]
\[\frac{V_{общ}}{V_{1}}.\]
\[Решение.\]
\[1)\ O_{1}AO_{2}B - ромб:\]
\[O_{1}A = AO_{2} = O_{2}B = BO_{1} = R.\]
\[Отсюда:\ \]
\[AB\bot O_{1}O_{2};\ \]
\[O_{1}C = CO_{2} = \frac{R}{2}.\]
\[2)\ Общая\ часть\ шаров\ состоит\ \]
\[из\ двух\ одинаковых\ сегментов:\]
\[h = OC_{1} = CO_{2} = \frac{R}{2}.\]
\[Объем\ равен:\ \]
\[V_{общ} = 2 \bullet \pi h^{2} \bullet \left( R - \frac{1}{3}h \right) =\]
\[= 2\pi \bullet \left( \frac{R}{2} \right)^{2} \bullet \left( R - \frac{R}{3 \bullet 2} \right) =\]
\[= \frac{2\pi R^{2}}{4} \bullet \frac{6R - R}{6} = \frac{5\pi R^{3}}{12}.\]
\[3)\ Объем\ одного\ шара:\ \ \]
\[V_{1} = \frac{4\pi R^{3}}{3}.\]
\[4)\ Найдем\ отношение\ объемов:\]
\[\frac{V_{общ}}{V_{1}} = \frac{5\pi R^{3}}{12} \bullet \frac{3}{4\pi R^{3}} = \frac{5 \bullet 3}{12 \bullet 4} =\]
\[= \frac{15}{48} = \frac{5}{16}.\]
\[Ответ:\ \ 5\ :16.\]