\[\boxed{\mathbf{510.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[r = 60\ см;\]
\[R = 75\ см.\]
\[Найти:\]
\[\frac{V_{общ}}{V_{1}}.\]
\[Решение.\]
\[1)\ AOB - прямоугольный:\]
\[OB = R;\]
\[OA = R - h\ и\ AB = r.\]
\[Значит:\]
\[R^{2} = (R - h)^{2} + r^{2}\ \]
\[R^{2} = R^{2} - 2Rh + h^{2} + r^{2}.\]
\[Отсюда:\ \]
\[h^{2} - 2Rh + r^{2} = 0.\]
\[2)\ Найдем\ высоту\ сегмента:\]
\[h^{2} - 150h + 3600 = 0\]
\[D_{1} = 5625 - 3600 = 2025 =\]
\[= 45^{2}\]
\[h_{1} = 75 + 45 = 120;\ \ h_{2} =\]
\[= 75 - 45 = 30.\]
\[h_{1} = 30\ см\ и\ h_{2} = 120\ см.\]
\[3)\ Найдем\ объем\ шарового\ \]
\[сегмента:\ \]
\[V_{1} = \pi h_{1}^{2} \bullet \left( R - \frac{1}{3}h_{1} \right) =\]
\[= 30^{2}\pi \bullet \left( 75 - \frac{30}{3} \right) =\]
\[= 900\pi \bullet 65 = 58\ 500\pi\ см^{3}.\]
\[V_{2} = \pi h_{2}^{2} \bullet \left( R - \frac{1}{3}h_{2} \right) =\]
\[= 120^{2}\pi \bullet \left( 75 - \frac{120}{3} \right) =\]
\[= 14400\pi \bullet 35 = 504\ 000\pi\ см^{3}.\]
\[Ответ:\ \ 58\ 500\pi\ см^{3}\text{\ \ }или\ \ \]
\[504\ 000\pi\ см^{3}.\]