\[\boxed{\mathbf{359.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AS = l;\]
\[AO = r.\]
\[Найти:\]
\[\angle ASB.\]
\[Решение.\]
\[\frac{\pi l^{2}\alpha}{360{^\circ}} = \pi rl\]
\[r = \frac{\pi l^{2}\alpha}{360{^\circ}\pi l} = \frac{\text{αl}}{360{^\circ}}.\]
\[В\ треугольнике\ ASO:\]
\[\sin{\angle ASO} = \frac{\text{AO}}{\text{SA}} = \frac{r}{l}.\]
\[\textbf{а)}\ \alpha = 180{^\circ}:\]
\[r = \frac{180l}{360} = \frac{l}{2}.\]
\[\sin{\angle ASO} = \frac{1}{2};\]
\[\angle ASO = 30{^\circ};\]
\[\angle ASB = 2\angle ASO = 60{^\circ}.\]
\[\textbf{б)}\ \alpha = 90{^\circ}:\]
\[r = \frac{90l}{360} = \frac{l}{4};\]
\[\sin{\angle ASO} = \frac{1}{4};\]
\[\angle ASO = \arcsin\frac{1}{4};\]
\[\angle ASB = 2\arcsin\frac{1}{4}.\]
\[\textbf{в)}\ \alpha = 60{^\circ}:\]
\[r = \frac{60l}{360} = \frac{l}{6};\]
\[\sin{\angle ASO} = \frac{1}{6};\]
\[\angle ASO = \arcsin\frac{1}{6};\]
\[\angle ASB = 2\arcsin\frac{1}{6}.\]