\[\boxed{\mathbf{332.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[h - высота.\]
\[Найти:\]
\[S_{сеч}.\]
\[Решение.\]
\[S = 2Rh;\]
\[R = \frac{S}{2h}.\]
\[\frac{1}{2}AB = \sqrt{R^{2} - d^{2}}\]
\[AB = \sqrt{\frac{S^{2}}{(2h)^{2}} - d^{2}} \cdot 2.\]
\[S_{сеч} = AB \cdot h = 2h\sqrt{\frac{S^{2}}{4h^{2}} - d^{2}} =\]
\[= \frac{2h\sqrt{S^{2} - d^{2} \cdot 4h^{2}}}{2h} =\]
\[= \sqrt{S^{2} - 4h^{2}d^{2}}.\]
\[Ответ:\ \ \sqrt{S^{2} - 4h^{2}d^{2}}.\]