\[\boxed{\mathbf{299.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[2S_{осн} = S_{бок}.\]
\[Найти:\]
\[OD = h_{\text{ABCD}}.\]
\[Решение.\]
\[1)\ S_{осн} = \frac{1}{2}m \cdot m \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}m^{2}.\]
\[2)\ h - высота\ боковой\ грани:\]
\[S_{бок} = 3 \cdot \left( \frac{1}{2}h \cdot m \right).\]
\[3)\ Получаем:\]
\[\frac{3}{2}h \cdot m = \frac{\sqrt{3}}{2}m^{2}\]
\[h = \frac{\sqrt{3}}{3}\text{m.}\]
\[4)\ DO - высота\ пирамиды\ \]
\[DABC;\ \ \]
\[H - середина\ стороны\ \text{AB\ }\]
\[основания\ пирамиды:\]
\[OD = \sqrt{DH^{2} - \left( \frac{1}{3}\text{AH} \right)^{2}} =\]
\[= \sqrt{h^{2} - \left( \frac{1}{3}m \cdot \frac{\sqrt{3}}{2} \right)^{2}} =\]
\[= \sqrt{\left( \frac{\sqrt{3}m}{3} \right)^{2} - \frac{m^{2}}{12}} =\]
\[= \sqrt{\frac{m^{2}}{3} - \frac{m^{2}}{12}} = \sqrt{\frac{3m^{2}}{12}} = m\sqrt{\frac{1}{4}} =\]
\[= \frac{m}{2}.\]
\[Ответ:\ \frac{m}{2}.\]