\[\boxed{\mathbf{268.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[A_{1}B_{1}C_{1} \parallel ABC;\]
\[MO_{1}\ :O_{1}O = 1\ :2;\]
\[NK = 4\ дм - апофема;\]
\[S_{ус} = 186\ дм^{2}.\]
\[Найти:\]
\[OO_{1}.\]
\[Решение.\]
\[В\ треугольнике\ MKO:\]
\[NO_{1} \parallel KO;\]
\[MO_{1}\ :MO = O_{1}N\ :OK.\]
\[Отсюда:\]
\[B_{1}C_{1}\ :BC = MO_{1}\ :MO;\]
\[B_{1}C_{1} = 1\ :3.\]
\[Пусть\ B_{1}C_{1} = x;\ \ BC = 3x:\]
\[S_{бок} = \frac{1}{2}(4x + 12x) \cdot 4 = 32x;\]
\[S_{осн} = x^{2} + 9x^{2} = 10x^{2};\]
\[S_{пов} = 10x^{2} + 32x = 186.\]
\[Получаем\ уравнение:\]
\[10x^{2} + 32x - 186 = 0\ \ \ |\ :2\]
\[5x^{2} + 16x - 93 = 0\]
\[D_{1} = 64 + 465 = 529 = 23^{2}\]
\[x_{1} =\]
\[= \frac{- 8 - 23}{5} < 0\ (не\ подходит);\]
\[x_{2} = \frac{- 8 + 23}{5} = 3\ (дм) - B_{1}C_{1}.\]
\[NO = 1,5\ дм.\]
\[BC = 3x = 9\ дм.\]
\[OK = 4,5\ дм.\]
\[KF = OK - NO_{1} = 3\ дм.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿KNF):\]
\[NF = OO_{1} = \sqrt{4^{2} - 3^{2}} = \sqrt{7}\ дм.\]
\[Ответ:\sqrt{7}\ дм.\]