\[\boxed{\mathbf{269.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AB = BC = AC = 4\ см;\]
\[A_{1}B_{1} = B_{1}C_{1} = A_{1}C_{1} = 2\ см;\]
\[AA_{1} = 2\ см.\]
\[Найти:\]
\[MK;\ \ A_{1}F_{1}.\]
\[Решение.\]
\[O\ и\ O_{1} - центры\ оснований\ \]
\[пирамиды.\]
\[1)\ В\ треугольнике\ ABC:\]
\[AB = R\sqrt{3};\ \ R = AO;\]
\[AO = \frac{4}{\sqrt{3}}\ дм;\]
\[OK = \frac{1}{2}AO = \frac{2}{\sqrt{3}}дм.\]
\[2)\ В\ треугольнике\ A_{1}B_{1}C_{1}:\]
\[A_{1}O = \frac{2}{\sqrt{3}}\ дм;\]
\[O_{1}M = \frac{1}{\sqrt{3}}\ дм.\]
\[3)\ EK = OK - OE;\ \ OE = O_{1}M:\]
\[EK = \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}\ дм.\]
\[4)\ В\ треугольнике\ AA_{1}F:\]
\[FA = AO - FO;\ \ FO = A_{1}O;\]
\[AF = \frac{4}{\sqrt{3}} - \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}}\ дм;\]
\[A_{1}F = \sqrt{AA_{1}^{2} - AF^{2}} = \frac{2\sqrt{6}}{3}\ дм.\]
\[5)\ В\ треугольнике\ MEK:\]
\[MK = \sqrt{ME^{2} + EK^{2}} = \sqrt{3}\ дм.\]
\[Ответ:\ \frac{2\sqrt{6}}{3}\ дм;\sqrt{3}\ дм.\]