\[\boxed{\mathbf{258.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - квадрат;\]
\[O - центр\ квадрата;\]
\[SO\bot ABCD.\]
\[Найти:\]
\[S_{пов}.\]
\[Решение.\]
\[1)\ ⊿SOA = ⊿SOC = ⊿SOB =\]
\[= ⊿SOD;\]
\[\angle SAC = \angle SCA = \angle SBD =\]
\[= \angle SDB = 60{^\circ}.\]
\[⊿SAC = ⊿SBD - правильные;\]
\[AS = BS = CS = DS = AC =\]
\[= BD = 12\ см.\]
\[2)\ В\ треугольнике\ SOA:\]
\[AO = OC = 6\ см;\]
\[AC = 2AO = 12\ см;\]
\[12 = AB\sqrt{2};\]
\[AB = \frac{12}{\sqrt{2}} = 6\sqrt{2}\ см.\]
\[3)\ S_{\text{ABCD}} = \left( 6\sqrt{2} \right)^{2} = 72\ см^{2};\]
\[S_{\text{ASB}} = \frac{1}{2}AB \cdot SE.\]
\[4)\ По\ теореме\ Пифагора\ \]
\[(из\ ⊿SEA):\]
\[AB = 6\sqrt{2};\ \ AE = BE = 3\sqrt{2};\]
\[SE = \sqrt{SA^{2} - AE^{2}} =\]
\[= \sqrt{12^{2} - \left( 3\sqrt{2} \right)^{2}} = \sqrt{126};\]
\[S_{\text{ASB}} = \frac{1}{2} \cdot 6\sqrt{2} \cdot \sqrt{126} =\]
\[= 3\sqrt{2} \cdot \sqrt{7} \cdot \sqrt{2} \cdot 3 = 18\sqrt{7}\ см^{2}.\]
\[5)\ ⊿SAB = ⊿SAD = ⊿SDC =\]
\[= ⊿SBC - по\ трем\ сторонам:\]
\[площади\ треугольников\ равны.\]
\[6)\ S_{бок} = 4S_{\text{ASNB}} = 4 \cdot 18\sqrt{7} =\]
\[= 72\sqrt{7}\ см^{2};\]
\[S_{пов} = S_{\text{ABCD}} + S_{бок} =\]
\[= 72 + 72\sqrt{7} =\]
\[= 72 \cdot \left( 1 + \sqrt{7} \right)\ см^{2}.\]
\[Ответ:\ 72 \cdot \left( 1 + \sqrt{7} \right)\ см^{2}.\]