\[\boxed{\mathbf{257.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Решение.\]
\[По\ задаче\ 254\ (пункт\ г):\]
\[tg\ 45{^\circ} = \frac{2\sqrt{3}h}{a};\]
\[a = 2\sqrt{3}h;\]
\[апофема = h\sqrt{2}.\]
\[Отсюда:\]
\[S_{бок} = \frac{1}{2}h\sqrt{2} \cdot 3 \cdot 2\sqrt{3h} = 3\sqrt{6}h^{2};\]
\[S_{осн} = \frac{1}{2}a \cdot a \cdot \frac{\sqrt{3}}{2} = \frac{12h^{2} \cdot \sqrt{3}}{4} =\]
\[= 3\sqrt{3}h^{2}.\]
\[S_{пов} = 3\sqrt{3}h^{2} + 3\sqrt{6}h^{2} =\]
\[= 3\sqrt{3}h^{2} \cdot \left( \sqrt{2} + 1 \right).\]
\[Ответ:\ 3\sqrt{3}h^{2} \cdot \left( \sqrt{2} + 1 \right).\]