\[\boxed{\mathbf{256.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - квадрат;\]
\[SO - высота.\]
\[Решение.\]
\[\textbf{а)}\ OK\bot BC;SK\bot BC - по\ \]
\[теореме\ о\ трех\ \]
\[перпендикулярах:\]
\[BK = CK.\]
\[ABCD - квадрат:\]
\[BD = AC = m\sqrt{2};\]
\[OB = \frac{1}{2}BD = \frac{m\sqrt{2}}{2}.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿SOK):\]
\[SK = \sqrt{SO^{2} + OK^{2}};\ \ \ \]
\[OK = \frac{1}{2}AB = \frac{m}{2}.\]
\[По\ определению\ тангенса\ \]
\[(из\ ⊿SKB):\]
\[\text{tg}\frac{\alpha}{2} = \frac{\text{BK}}{\text{SK}} = \frac{m}{2}\ :\sqrt{SO^{2} + \frac{m^{2}}{4}} =\]
\[= \frac{m \cdot 2}{2\sqrt{4SO^{2} + m^{2}}} = \frac{m}{\sqrt{4SO^{2} + m^{2}}};\]
\[tg^{2}\frac{\alpha}{2}\left( 4SO^{2} + m^{2} \right) = m^{2}\]
\[4SO^{2} = \frac{m^{2}}{tg^{2}\frac{\alpha}{2}} - m^{2}\]
\[SO^{2} = \frac{m^{2}}{4}\left( \frac{1}{tg^{2}\frac{\alpha}{2}} - 1 \right) =\]
\[= \frac{m^{2}}{4}\left( \frac{\text{co}s^{2}\frac{\alpha}{2}}{\text{si}n^{2}\frac{\alpha}{2}} - 1 \right) =\]
\[= \frac{m^{2}}{4} \cdot \frac{\text{co}s^{2}\frac{\alpha}{2} - sin^{2}\frac{\alpha}{2}}{\text{si}n^{2}\frac{\alpha}{2}} =\]
\[= \frac{m^{2}}{4} \cdot \frac{\cos\alpha}{\sin^{2}\frac{\alpha}{2}};\]
\[SO = \frac{m}{2\sin\frac{\alpha}{2}} \cdot \cos\alpha.\]
\[\textbf{б)}\ По\ определению\ синуса\ \]
\[(из\ ⊿SBK):\]
\[SB = \frac{\text{BK}}{\sin\frac{\alpha}{2}} = \frac{n}{2\sin\frac{\alpha}{2}}.\]
\[\textbf{в)}\ SK\bot BC;\ \ OK\bot BC:\]
\[\angle SKO - линейный\ угол\ \]
\[двугранного\ угла.\]
\[По\ определению\ косинуса:\]
\[\cos{\angle SKO} = \frac{\text{OK}}{\text{SK}} = \frac{m}{2SK};\]
\[\text{tg\ }\frac{\alpha}{2} = \frac{\text{BK}}{\text{SK}} = \frac{m}{2SK};\]
\[\cos{\angle SKO} = tg\ \frac{\alpha}{2}\]
\[\angle SKO = \arccos{\text{tg}\frac{\alpha}{2}}.\]
\[\textbf{г)}\ BN\bot SC.\]
\[⊿SBK = ⊿SDK:\]
\[BN = DN;\]
\[DN\bot SC.\]
\[\angle BND = \varphi - линейный\ угол\ \]
\[двугранного\ угла\ при\ боковом\ \]
\[ребре\ пирамиды.\]
\[По\ определению\ синуса\ \]
\[\left( из\ ⊿\text{SBN} \right):\]
\[BN = SB \cdot \sin\alpha\]
\[SB = \frac{m}{2\sin\frac{\alpha}{2}};\]
\[BN = \frac{m \cdot 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}} =\]
\[= m \cdot \cos\frac{\alpha}{2}.\]
\[NO - высота,\ медиана\ и\ \]
\[биссектриса\ ⊿BNO:\]
\[⊿BNO - равнобедренный.\]
\[По\ определению\ синуса:\]
\[\sin\frac{\varphi}{2} = \frac{\text{OB}}{\text{BN}} = \frac{m}{\sqrt{2}} \cdot \frac{1}{m \cdot \cos\frac{\alpha}{2}} =\]
\[= \frac{1}{\sqrt{2} \cdot \cos\frac{\alpha}{2}} = \frac{\sqrt{2}}{2 \cdot \cos\frac{\alpha}{2}};\]
\[\frac{\varphi}{2} = \arcsin\left( \frac{\sqrt{2}}{2\cos\frac{\alpha}{2}} \right);\]
\[\varphi = 2\arcsin\left( \frac{\sqrt{2}}{2\cos\frac{\alpha}{2}} \right).\]