\[\boxed{\mathbf{255.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AB = 8\ см;\]
\[\angle CMB = \varphi.\]
\[Найти:\]
\[\text{MO.}\]
\[Решение.\]
\[1)\ MABC - правильная\ \]
\[пирамида:\]
\[O - центр\ треугольника\ ABC;\]
\[AO = R;\]
\[OD = r;\]
\[AO = 2OD.\]
\[2)\ AO = \frac{8}{\sqrt{3}};\ \ OD = \frac{4}{\sqrt{3}}.\]
\[В\ треугольнике\ MOD:\]
\[MO^{2} = MD^{2} - OD^{2}.\]
\[3)\ ⊿CDM - прямоугольный:\]
\[CD = \frac{1}{2}BC;\]
\[\angle CMD = \frac{\varphi}{2}.\]
\[4)\ tg\frac{\varphi}{2} = \frac{\text{DC}}{\text{MD}};\]
\[MD = 4\ :tg\frac{\varphi}{2} = \frac{4}{\text{tg}\frac{\varphi}{2}};\]
\[MO = \sqrt{\left( \frac{4}{\text{tg}\frac{\varphi}{2}} \right)^{2} - \left( \frac{4}{\sqrt{3}} \right)^{2}} =\]
\[= \frac{4}{\text{tg}\frac{\varphi}{2}}\sqrt{1 - \frac{1}{3}tg^{2}\frac{\varphi}{2}}.\]
\[Ответ:\ \frac{4}{\text{tg}\frac{\varphi}{2}}\sqrt{1 - \frac{1}{3}tg^{2}\frac{\varphi}{2}}.\]