\[\boxed{\mathbf{254.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Решение.\]
\[Точка\ O - центр\ правильного\ \]
\[⊿\text{ABC.}\]
\[AK\bot BC:\]
\[SK\bot BC - по\ теореме\ о\ трех\ \]
\[перпендикулярах.\]
\[\textbf{а)}\ AO = R - радиус\ описанной\ \]
\[около\ ⊿ABC\ окружности.\]
\[По\ теореме\ синусов:\]
\[\frac{\text{BC}}{\sin{\angle BAC}} = 2R;\]
\[2R = \frac{a}{\sin{60{^\circ}}};\]
\[R = AO - так\ как\ ⊿ABC\ \]
\[равносторонний;\]
\[R = \frac{a}{\sqrt{3}}.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿AOS):\]
\[AS = \sqrt{SO^{2} + AO^{2}} =\]
\[= \sqrt{H^{2} + \frac{a^{2}}{3}} = \sqrt{\frac{3H^{2} + a^{2}}{3}}.\]
\[\textbf{б)}\ ⊿ASB = ⊿BSC = ⊿ASC - по\ \]
\[трем\ сторонам:\]
\[плоские\ углы\ при\ вершине\ \]
\[пирамиды\ равны.\]
\[По\ теореме\ косинусов\ \]
\[\left( из\ ⊿\text{ASB} \right):\]
\[AB^{2} =\]
\[= AS^{2} + SB^{2} - 2AS \cdot SB \cdot \cos{\angle S}\]
\[a^{2} =\]
\[= \frac{6H^{2} + 2a^{2}}{3} - 2 \cdot \frac{3H^{2} + a^{2}}{3} \cdot \cos\alpha\ \]
\[3a^{2} - 6H^{2} - 2a^{2} =\]
\[= \left( - 6H^{2} - 2a^{2} \right) \cdot \cos\alpha\]
\[a^{2} - 6H^{2} = \left( - 6H^{2} - 2a^{2} \right) \cdot \cos\alpha\]
\[\cos\alpha = \frac{a^{2} - 6H^{2}}{\left( - 6H^{2} - 2a^{2} \right)} =\]
\[= \frac{6H^{2} - a^{2}}{2 \cdot \left( 3H^{2} + a^{2} \right)}\]
\[\alpha = \arccos\frac{6H^{2} - a^{2}}{2 \cdot \left( 3H^{2} + a^{2} \right)}.\]
\[\textbf{в)}\ По\ определению\ тангенса\ \]
\[(из\ ⊿SAO):\]
\[tg\ \angle SAO = \frac{\text{OS}}{\text{AO}} = \frac{H\sqrt{3}}{a}\]
\[\angle SAO = arctg\frac{H\sqrt{3}}{2}.\]
\[\textbf{г)}\ В\ правильной\ пирамиде\ все\ \]
\[боковые\ ребра\ равны\ и\ все\ \]
\[боковые\ грани\ наклонены\ к\ \]
\[плоскости\ основания\ под\ \]
\[одинаковым\ углом.\]
\[По\ определению\ тангенса\ \]
\[(из\ ⊿SOK):\]
\[tg\ \angle SKO = \frac{\text{SO}}{\text{OK}};\]
\[OK = r - радиус\ окружности,\ \]
\[вписанной\ в\ ⊿ABC.\]
\[r = \frac{S_{\text{ABC}}}{p};\ \ p = \frac{3a}{2};\ \ \ S = \frac{a^{2}\sqrt{3}}{4}:\]
\[r = \frac{a}{2\sqrt{3}}.\]
\[tg\ \angle SKO = \frac{H}{r} = \frac{2\sqrt{3}H}{a};\]
\[\angle SKO = srctg\frac{2\sqrt{3}H}{a}.\]
\[\textbf{д)}\ ⊿SAB = ⊿SAC;\ \ BM\bot AS;\]
\[MC\bot AS:\]
\[\angle BMS - линейный\ угол\ \]
\[двугранного\ угла\ при\ боковом\ \]
\[ребре\ пирмиды;\]
\[SN\bot AB.\]
\[По\ теореме\ Пифагора:\]
\[SN = \sqrt{SB^{2} - NB^{2}} =\]
\[= \sqrt{\frac{3H^{2} + a^{2}}{3} - \frac{a^{2}}{4}} =\]
\[= \sqrt{\frac{12H^{2} + 4a^{2} - 3a^{2}}{12}} =\]
\[= \sqrt{\frac{12H^{2} + a^{2}}{12}};\]
\[S_{\text{ABC}} = \frac{1}{2}AB \cdot SN = \frac{1}{2}MB \cdot AS;\]
\[a \cdot \sqrt{\frac{12H^{2} + a^{2}}{12}} = MB\sqrt{\frac{3H^{2} + a^{2}}{3}}\]
\[MB = \frac{a \cdot \sqrt{12H^{2} + a^{2}} \cdot \sqrt{3}}{2\sqrt{3} \cdot \sqrt{3H^{2} + a^{2}}} =\]
\[= \frac{a \cdot \sqrt{12H^{2} + a^{2}}}{2\sqrt{3H^{2} + a^{2}}}.\]
\[По\ теореме\ косинусов\ \]
\[(в\ ⊿MBC):\]
\[MB = MC;\]
\[BC^{2} =\]
\[= MB^{2} + MC^{2} - 2MB \cdot MC \cdot \cos{\angle M}\]
\[6H^{2} + 2a^{2} - 12H^{2} - a^{2} =\]
\[= - \left( 12H^{2} + a^{2} \right)\cos\alpha\]
\[\cos\alpha = \frac{a^{2} - 6H^{2}}{- 12H^{2} - a^{2}} =\]
\[= \frac{6H^{2} - a^{2}}{a^{2} + 12H^{2}}\]
\[\alpha = \arccos\frac{6H^{2} - a^{2}}{a^{2} + 12H^{2}}.\]