\[\boxed{\mathbf{242.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - квадрат.\]
\[Найти:\]
\[\textbf{а)}\ h;\]
\[\textbf{б)}\ S_{бок}.\]
\[Решение.\]
\[1)\ AC - диагональ;\ \ AC > AD:\]
\[проекция\ AC\ наклонной\ \text{SC\ }\]
\[больше\ проекций\ \text{AD\ }и\ \text{AB\ }\]
\[наклонных\ SD\ и\ \text{SB.}\]
\[2)\ SC = 12\ см;\ \ AC = AB\sqrt{2};\ \ \]
\[SA = AB.\]
\[3)\ По\ теореме\ Пифагора:\]
\[SC = \sqrt{SA^{2} + AC^{2}} =\]
\[= \sqrt{AB^{2} + 2AB^{2}} = AB\sqrt{3}.\]
\[\text{AB}\sqrt{3} = 12\]
\[AB = \frac{12\sqrt{3}}{3} = 4\sqrt{3}\ см.\]
\[\textbf{а)}\ SA = 4\sqrt{3}\ см.\]
\[\textbf{б)}\ S_{\text{SAD}} = S_{\text{SAB}} = \frac{1}{2}SA \cdot AB =\]
\[= \frac{1}{2}AB^{2} = \frac{1}{2} \cdot \left( 4\sqrt{3} \right)^{2} = 24\ см^{2}.\]
\[По\ теореме\ о\ трех\ \]
\[перпендикулярах:\]
\[SD\bot DC;\ \ SB\bot BC.\]
\[По\ теореме\ Пифагора:\]
\[SD = \sqrt{2AB^{2}} = \sqrt{2 \cdot 16 \cdot 3} =\]
\[= 4\sqrt{6}\ см.\]
\[S_{\text{SDC}} = \frac{1}{2}SD \cdot DC = \frac{48\sqrt{2}\ }{2} =\]
\[= 24\sqrt{2}\ см^{2};\]
\[S_{\text{SBC}} = \frac{1}{2}SB \cdot BC = \frac{48\sqrt{2}}{2} =\]
\[= 24\sqrt{2}\ см^{2};\]
\[S_{бок} = 2 \cdot 24 + 2\sqrt{2} \cdot 24 =\]
\[= 48 \cdot \left( \sqrt{2} + 1 \right)\ см^{2}.\]
\[Ответ:4\sqrt{3}\ см;\ \ \]
\[48 \cdot \left( \sqrt{2} + 1 \right)\ см^{2}.\]