\[\boxed{\mathbf{241.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Найти:\]
\[S_{пир}.\]
\[Решение.\]
\[1)\ ⊿ABD - прямоугольный;\ \]
\[\angle ADB = 90{^\circ};AD\bot DO;\]
\[по\ теореме\ о\ трех\ \]
\[перпендикулярах:\]
\[AD\bot MD;\]
\[MD - высота\ грани\ \text{MAD.}\]
\[2)\ В\ треугольнике\ MDO:\]
\[MD = \sqrt{2^{2} + {1,5}^{2}} = \sqrt{6,25} =\]
\[= 2,5\ м.\]
\[3)\ В\ треугольнике\ ADB:\]
\[DK\bot AB;\]
\[AB \cdot DK = AD \cdot BD\]
\[5 \cdot DK = 4 \cdot 3\]
\[DK = \frac{12}{5}\ м.\]
\[4)\ В\ треугольнике\ MOF:\]
\[OF \parallel DK;\]
\[OF = \frac{1}{2}DK = \frac{6}{5}\ м.\]
\[MF = \sqrt{MO^{2} + OF^{2}} =\]
\[= \sqrt{4 + \frac{36}{25}} = \sqrt{\frac{136}{25}} = \frac{2\sqrt{34}}{5}\ м.\]
\[5)\ S_{бок} = 2S_{\text{AMD}} + S_{\text{AMB}} =\]
\[= 4 \cdot 2,5 + 5 \cdot \frac{2\sqrt{34}}{5} =\]
\[= 10 + 2\sqrt{34}\ м^{2}.\]
\[S_{осн} = 4 \cdot 3 = 12\ м^{2};\]
\[S_{пир} = 10 + 2\sqrt{34} + 12 =\]
\[= 22 + 2\sqrt{34}\ м^{2}.\]
\[Ответ:\ \ 22 + 2\sqrt{34}\ м^{2}.\]