\[\boxed{\mathbf{231.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[A_{1}B_{1} = 15\ см;\]
\[A_{1}D_{1} = 8\ см;\]
\[\angle B_{1}A_{1}D_{1} = 60{^\circ};\]
\[S_{BB_{1}D_{1}D} = 130\ см^{2}.\]
\[Найти:\]
\[S_{пов}.\]
\[Решение.\]
\[По\ теореме\ косинусов:\]
\[BD^{2} =\]
\[= AB^{2} + AD^{2} - 2AB \cdot AD \cdot \cos{60{^\circ}} =\]
\[= 64 + 225 - 2 \cdot 8 \cdot 15 \cdot \frac{1}{2} = 169;\]
\[BD = 13\ см.\]
\[AC^{2} =\]
\[= AB^{2} + BC^{2} - 2AB \cdot BC \cdot \cos{120{^\circ}} =\]
\[= 64 + 225 + 2 \cdot 8 \cdot 15 \cdot \frac{1}{2} = 409;\]
\[AC = \sqrt{409}.\]
\[AC > BD:\]
\[BD - меньшая\ диагональ;\]
\[BB_{1}D_{1}D - меньшее\ сечение.\]
\[S_{BB_{1}D_{1}D} = BB_{1} \cdot BD =\]
\[= BB_{1} \cdot 13 = 130\]
\[BB_{1} = 10\ см.\]
\[S_{пов} = 2S_{осн} + S_{бок};\ \ \ \]
\[S_{бок} = 2S_{AA_{1}D_{1}D} + 2S_{AA_{1}B_{1}B} =\]
\[= 2AD \cdot AA_{1} + 2AB \cdot AA_{1} =\]
\[= 2 \cdot 15 \cdot 10 + 2 \cdot 8 \cdot 10 =\]
\[= 460\ см^{2}.\]
\[S_{осн} = AB \cdot AD \cdot \sin{\angle A} =\]
\[= 8 \cdot 15 \cdot \sin{60{^\circ}} = 60\sqrt{3}\ см^{2}.\]
\[S_{пов} = 2 \cdot 60\sqrt{3} + 460 =\]
\[= 20 \cdot \left( 23 + 6\sqrt{3} \right)\ см^{2}.\]
\[Ответ:\ 20 \cdot \left( 23 + 6\sqrt{3} \right)\ см^{2}.\]