\[\boxed{\mathbf{223.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Найти:\]
\[AB;\]
\[AC_{1}.\]
\[Решение.\]
\[Пусть\ BC_{1} = x\sqrt{2}\ см.\]
\[S_{BC_{1}D_{1}} = AB \cdot BC_{1} = x \cdot x \cdot \sqrt{2} =\]
\[= 64\sqrt{2}\]
\[x^{2}\sqrt{2} = 64\sqrt{2}\]
\[x^{2} = 64\]
\[x = 8\ (см) - \text{AB.}\]
\[По\ теореме\ Пифагора:\]
\[AC_{1} = \sqrt{AB^{2} + BC_{1}^{2}} =\]
\[= \sqrt{8^{2} + \left( 8\sqrt{2} \right)^{2}} = \sqrt{192} =\]
\[= 8\sqrt{3}\ см.\]
\[Ответ:AB = 8\ см;\ \ \]
\[AC_{1} = 8\sqrt{3}\ см.\]