\[\boxed{\mathbf{204.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Решение.\]
\[\textbf{а)}\ 1)\ Проведем\ высоты\ AD;\]
\[BK;CE.\]
\[O - точка\ их\ пересечения\ в\ \]
\[⊿ABC.\]
\[2)\ ⊿MAO = ⊿MBO = ⊿MCO -\]
\[по\ двум\ катетам:\]
\[OA = OB = OC.\]
\[Отсюда:\]
\[MA = MB = MC = \frac{a}{\sin\varphi}.\]
\[3)\ В\ треугольнике\ MCO:\]
\[\frac{\text{MO}}{\text{MC}} = \sin\varphi;\]
\[MC = \frac{a}{\sin\varphi};\]
\[\frac{\text{MO}}{\text{OC}} = tg\ \varphi;\]
\[OC = \frac{a}{\text{tg\ φ}}.\]
\[4)\ OD = OK = OE = \frac{\text{OC}}{2}:\]
\[OD = \frac{a}{2tg\ \varphi}.\]
\[\mathrm{\Delta}MOD = \mathrm{\Delta}MOK = \mathrm{\Delta}MOE - по\ \]
\[двум\ катетам:\]
\[MK = ME = MD.\]
\[5)\ OD - проекция\ \text{MD\ }на\ \]
\[плоскость\ ABC;\ \ OD\bot BC:\]
\[MD\bot BC - по\ теореме\ о\ трех\ \]
\[перпендикулярах.\]
\[6)\ Из\ треугольника\ MDO:\]
\[MD^{2} = MO^{2} + OD^{2}\]
\[MD^{2} = a^{2} + \frac{a^{2}}{4tg^{2}\varphi} =\]
\[= \frac{4a^{2}tg^{2}\varphi + a^{2}}{4tg^{2}\varphi};\]
\[MD = \sqrt{\frac{a^{2}\left( 4tg^{2}\varphi + 1 \right)}{4tg^{2}\varphi}} =\]
\[= \frac{a}{2tg\ \varphi} \cdot \sqrt{1 + 4tg^{2}\varphi}.\]
\[\textbf{б)}\ l = \pi R;\ \ R = a:\]
\[l = \frac{2\pi a}{\text{tg\ φ}}.\]
\[\textbf{в)}\ S = \frac{AB^{2}\sqrt{3}}{4};\ \ AB = OC \cdot \sqrt{3} =\]
\[= \frac{a\sqrt{3}}{\text{tg\ φ}}:\]
\[S_{\text{ABC}} = \frac{3\sqrt{3}a^{2}}{4tg^{2}\varphi}.\]