\[\boxed{\mathbf{718.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \]
\[ABCD - квадрат;\]
\[K_{1} - пересечение\ диагоналей;\]
\[AB = BC = CD = DA = a.\]
\[Доказать:\]
\[\angle(AK;BD) = 90{^\circ}.\]
\[Доказательство.\]
\[1)\ \overrightarrow{\text{AD}}\left\{ a;0;0 \right\};\ \ \ \overrightarrow{\text{AB}}\left\{ 0;a;0 \right\};\ \ \]
\[\overrightarrow{\text{BD}}\left\{ a; - a;0 \right\}.\]
\[K_{1}\left( \frac{a}{2};\frac{a}{2};0 \right);K\left( \frac{a}{2};\frac{a}{2};b \right);\ \ \]
\[KK_{1} = b;\]
\[\overrightarrow{\text{AK}}\left\{ \frac{a}{2};\frac{a}{2};b \right\}.\]
\[2)\ В\ треугольнике\ BAD:\]
\[\angle A = 90{^\circ};\]
\[BD = \sqrt{a^{2} + a^{2}} = a\sqrt{2}.\]
\[3)\ В\ треугольнике\ AKK_{1}:\]
\[\angle K_{1} = 90{^\circ};\]
\[AK_{1} = \frac{1}{2}BD = \frac{a\sqrt{2}}{2};\]
\[AK = \sqrt{b^{2} + \left( \frac{a\sqrt{2}}{2} \right)^{2}} =\]
\[= \sqrt{\frac{4b^{2} + 2a^{2}}{4}} = \sqrt{b^{2} + \frac{a^{2}}{2}}.\]
\[4)\ \overrightarrow{\text{AK}} \cdot \overrightarrow{\text{BD}} =\]
\[= \left| \overrightarrow{\text{AK}} \right| \cdot \left| \overrightarrow{\text{BD}} \right| \cdot \cos{\angle\left( \overrightarrow{\text{AK}};\overrightarrow{\text{BD}} \right)};\]
\[\overrightarrow{\text{AK}} \cdot \overrightarrow{\text{BD}} =\]
\[= x_{1} \cdot x_{2} + y_{1} \cdot y_{2} + z_{1} \cdot z_{2} =\]
\[= \frac{a^{2}}{2} - \frac{a^{2}}{2} = 0\]
\[a\sqrt{2} \cdot \sqrt{b^{2} + \frac{a^{2}}{2}} \cdot \cos{\angle\left( \overrightarrow{\text{AK}};\overrightarrow{\text{BD}} \right)} =\]
\[= 0.\]
\[Векторы\ не\ нулевые,\ косинус\ \]
\[равен\ 0:\]
\[\angle\left( \overrightarrow{\text{AK}};\overrightarrow{\text{BD}} \right) = 90{^\circ}.\]
\[Что\ и\ требовалось\ доказать.\]
\[Параграф\ 3.\ Движения\]