\[\boxed{\mathbf{717.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\angle\text{BA}C_{1} = 60{^\circ};\]
\[\angle DAC_{1} = 60{^\circ}.\]
\[Найти:\]
\[\angle CAC_{1}.\]
\[Решение.\]
\[\overrightarrow{AC_{1}}\left\{ \cos{60{^\circ}};\cos{60{^\circ}};\sin{\angle CAC_{1}} \right).\]
\[Пусть\ \overrightarrow{AC_{1}} - единичный\ \]
\[вектор.\]
\[\overrightarrow{AC_{1}} =\]
\[= \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2} \right)^{2} + \sin^{2}{\angle CAC_{1}} =\]
\[= 1\]
\[\frac{1}{4} + \frac{1}{4} + \sin^{2}{\angle CAC_{1}} = 1\]
\[\sin^{2}{\angle CAC_{1}} = 1 - \frac{1}{2} = \frac{1}{2}\]
\[\sin{\angle CAC_{1}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2};\]
\[\angle CAC_{1} = \arcsin\frac{\sqrt{2}}{2} = 45{^\circ}.\]
\[Ответ:45{^\circ}.\]