\[\boxed{\mathbf{557.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - тетраэдр;\]
\[AM = MC;\ \]
\[BN = NC;\]
\[CK = KD;\]
\[AB = 3\ см;\]
\[BC = 4\ см;\]
\[BD = 5\ см.\]
\[Найти:\]
\[длины\ векторов.\]
\[Решение.\]
\[\textbf{а)}\ \overrightarrow{\text{AB}},\ \overrightarrow{\text{BC}},\ \overrightarrow{\text{BD}},\ \overrightarrow{\text{NM}},\ \overrightarrow{\text{BN}},\ \overrightarrow{\text{NK}}:\]
\[\left| \overrightarrow{\text{AB}} \right| = AB = 3\ см;\ \ \]
\[\left| \overrightarrow{\text{BC}} \right| = BC = 4\ см;\ \]
\[\left| \overrightarrow{\text{BD}} \right| = BD = 5\ см\text{.\ \ }\]
\[N - середина\ \text{BC\ }и\ \ M -\]
\[середина\ AC:\]
\[MN - средняя\ линия\ \mathrm{\Delta}ABC.\]
\[\left| \overrightarrow{\text{NM}} \right| = NM = \frac{1}{2}AB = 1,5\ см;\]
\[\left| \overrightarrow{\text{BN}} \right| = BN = \frac{1}{2}BC = 2\ см.\]
\[N - середина\ \text{BC\ }и\ \ K -\]
\[середина\ CD:\]
\[NK - средняя\ линия\ \mathrm{\Delta}BCD.\ \]
\[\left| \overrightarrow{\text{NK}} \right| = NK = \frac{1}{2}BD = 2,5\ см.\]
\[\textbf{б)}\ \overrightarrow{\text{CB}},\ \overrightarrow{\text{BA}},\ \overrightarrow{\text{DB}},\ \overrightarrow{\text{NC}},\ \overrightarrow{\text{KN}}:\]
\[\left| \overrightarrow{\text{CB}} \right| = CB = 4\ см;\ \ \]
\[\left| \overrightarrow{\text{BA}} \right| = BA = 3\ см;\ \]
\[\left| \overrightarrow{\text{DB}} \right| = DB = 5\ см;\ \ \]
\[\left| \overrightarrow{\text{NC}} \right| = NC = \frac{1}{2}BC = 2\ см.\]
\[K - середина\ \text{CD\ }и\ \ N -\]
\[середина\ BC:\]
\[KN - средняя\ линия\ \mathrm{\Delta}BCD.\ \]
\[\left| \overrightarrow{\text{KN}} \right| = KN = \frac{1}{2}BD = 2,5\ см.\]
\[\mathbf{Ответ}\mathbf{:\ \ }а)\ 3\ см,\ 4\ см,\ 5\ см,\ 1,5\ см,\ \]
\[2\ см,\ 2,5\ см;\ \ \]
\[\textbf{б)}\ 4\ см,\ 3\ см,\ 5\ см,\ 2\ см,\ 2,5\ см.\]