\[\boxed{\mathbf{558.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABCD}A_{1}B_{1}C_{1}D_{1} -\]
\[параллелепипед;\]
\[AD = 8\ см;\]
\[AB = 9\ см;\]
\[AA_{1} = 12\ см.\]
\[Найти:\]
\[длины\ векторов.\]
\[Решение.\]
\[\text{ABCD}A_{1}B_{1}C_{1}D_{1} -\]
\[параллелепипед:\]
\[CC_{1} = BB_{1} = AA_{1} = 12\ см;\ \ \ \]
\[CB = AD = 8\ см;\ \]
\[CD = AB = 9\ см;\ \ \]
\[все\ углы\ при\ вершинах -\]
\[прямые.\]
\[\textbf{а)}\ \overrightarrow{CC_{1}},\ \overrightarrow{\text{CB}},\ \overrightarrow{\text{CD}}:\]
\[\left| \overrightarrow{CC_{1}} \right| = CC_{1} = 12\ см;\ \ \left| \overrightarrow{\text{CB}} \right| =\]
\[= CB = 8\ см;\ \]
\[\left| \overrightarrow{\text{CD}} \right| = CD = 9\ см\text{.\ \ }\]
\[\textbf{б)}\ \overrightarrow{DC_{1}},\ \overrightarrow{\text{DB}},\ \overrightarrow{DB_{1}}.\]
\[\mathrm{\Delta}DCC_{1} - прямоугольный:\ \]
\[\left| \overrightarrow{DC_{1}} \right| = DC_{1} = \sqrt{CC_{1}^{2} + DC^{2}} =\]
\[= \sqrt{12^{2} + 9^{2}} = 15\ см.\]
\[\mathrm{\Delta}ABD - прямоугольный:\ \]
\[\left| \overrightarrow{\text{DB}} \right| = DB = \sqrt{AB^{2} + AD^{2}} =\]
\[= \sqrt{9^{2} + 8^{2}} = \sqrt{145}\ см.\]
\[\mathrm{\Delta}DBB_{1} - прямоугольный:\ \]
\[\left| \overrightarrow{DB_{1}} \right| = DB_{1} = \sqrt{BB_{1}^{2} + DB^{2}} =\]
\[= \sqrt{12^{2} + 145} = 17\ см.\]
\[\mathbf{Ответ}\mathbf{:\ \ }а)\ 12\ см,\ 8\ см,\ 9\ см;\ \ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ б)\ 12\ см,\ \sqrt{145}\ см,\ 17\ см.\]