\[\boxed{\mathbf{556.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[шар\ (O;R);\]
\[R = 5\ см;\]
\[p = 8,9\ г/см^{3};\]
\[\textbf{а)}\ d = 0,2\ см;\]
\[\textbf{б)}\ d = 0,15\ см.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ d - тодщина\ стенки\ шара:\]
\[r = R - d\ - \ \ радиус\ \]
\[внутренней\ сферы\ шара.\]
\[2)\ Плотность\ воды\ p_{2} = 1\frac{г}{см^{3}}.\]
\[3)\ Объем\ шара:\ \ \]
\[V_{шар} = \frac{4}{3}\pi R^{3} = \frac{4}{3} \bullet 3,14 \bullet 5^{3} =\]
\[= 523,3\ см^{3}.\]
\[\textbf{а)}\ Объем\ меди:\]
\[V = V_{внеш.\ сфер} - V_{внутр.\ сфера} =\]
\[= \frac{4}{3}\pi R^{3} - \frac{4}{3}\pi r^{3} =\]
\[= \frac{4}{3}\pi\left( R^{3} - (R - d)^{3} \right) =\]
\[= \frac{4}{3}\pi \bullet \left( 5^{3} - (5 - 0,2)^{3} \right) =\]
\[= \frac{4}{3} \bullet 3,14 \bullet (125 - 110,5) =\]
\[= 60,7\ см^{3}.\]
\[Масса\ шара:\ \ \]
\[m = p \bullet V = 8,9 \bullet 60,7 = 540,23\ г.\]
\[Плотность\ всего\ шара:\]
\[p_{2} = \frac{m}{V_{шар}} = \frac{540,23}{523,3} =\]
\[= 1,03 > p_{1} \rightarrow \ шар\ плавать\ не\ \]
\[будет.\]
\[\textbf{б)}\ Объем\ меди:\]
\[V = \frac{4}{3}\pi\left( R^{3} - (R - d)^{3} \right) =\]
\[= \frac{4}{3}\pi \bullet \left( 5^{3} - (5 - 0,15)^{3} \right) =\]
\[= \frac{4}{3} \bullet 3,14 \bullet (125 - 114,08) =\]
\[= 45,71\ см^{3}.\]
\[Масса\ шара:\ \ \]
\[m = p \bullet V = 8,9 \bullet 45,71 = 406,9\ г.\]
\[Плотность\ всего\ шара:\]
\[p_{2} = \frac{m}{V_{шар}} = \frac{406,9}{523,3} =\]
\[= 0,77 < p_{1} \rightarrow шар\ будет\ \]
\[плавать.\]
\[\mathbf{Отв}ет:\ \ а)\ нет;\ \ б)\ да.\]
\[Глава\ \text{VI}.\ Векторы\ в\ пространстве\]