\[\boxed{\mathbf{525.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABC}A_{1}B_{1}C_{1} - правильная\ \]
\[призма;\]
\[\mathrm{\Delta}ABC - равносторонний;\]
\[BC_{1} = d.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ Построим\ отрезок\ BF\bot AC:\ \]
\[C_{1}F - \ проекция\ BC_{1}\ на\ \]
\[плоскость\ грани\ AA_{1}C_{1}C;\]
\[\angle BC_{1}F = \varphi.\]
\[2)\ \mathrm{\Delta}FC_{1}B - прямоугольный:\ \ \]
\[FB = d \bullet \sin\varphi.\]
\[\mathrm{\Delta}ABF - прямоугольный:\ \ \]
\[AB = \frac{\text{FB}}{\sin{60{^\circ}}} = \frac{2d\sin\varphi}{\sqrt{3}}.\]
\[3)\ S_{осн} = S_{\text{ABC}} = \frac{1}{2}AB \bullet FB =\]
\[= \frac{1}{2} \bullet \frac{2d\sin\varphi}{\sqrt{3}} \bullet d \bullet \sin\varphi =\]
\[= \frac{2d^{2}\sin^{2}\varphi}{2 \bullet \sqrt{3}} = \frac{\sqrt{3}}{3} \bullet d^{2} \bullet \sin^{2}\varphi.\]
\[4)\ \mathrm{\Delta}FC_{1}B - прямоугольный:\ \ \]
\[FC_{1} = d \bullet \cos\varphi.\]
\[\mathrm{\Delta}C_{1}FC - прямоугольный\ \]
\[(FC = \frac{1}{2}AB):\]
\[h = CC_{1} =\]
\[= \sqrt{(d \bullet cos\varphi)^{2} - \left( \frac{d\sin\varphi}{\sqrt{3}} \right)^{2}} =\]
\[= \sqrt{d^{2} \bullet \cos^{2}\varphi - \frac{d^{2}\cos^{2}\varphi}{3}} =\]
\[= d\sqrt{\frac{3\cos^{2}\varphi - \sin^{2}\varphi}{3}}.\]
\[5)\ V = S_{осн} \bullet h =\]