\[\boxed{\mathbf{526.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABC}A_{1}B_{1}C_{1} - призма.\]
\[Доказать:\]
\[V_{пр} = \frac{1}{2}S_{AA_{1}BB_{1}} \bullet CH.\]
\[Доказательство.\]
\[1)\ В\ \mathrm{\Delta}\text{ABC\ }построим\ CH -\]
\[высоту:\]
\[CH\bot ABB_{1}A_{1}.\]
\[2)\ Достроим\ призму\ до\ \]
\[параллелепипеда\ \]
\[\text{ABCD}A_{1}B_{1}C_{1}D_{1}.\]
\[3)\ V_{парал} = AA_{1} \bullet BB_{1} \bullet CH =\]
\[= S_{AA_{1}BB_{1}} \bullet CH.\]
\[4)\ ABCA_{1}B_{1}C_{1} = BCDB_{1}C_{1}D_{1}:\]
\[CA = DB;\ \ \ \]
\[CB - общая\ сторона;\]
\[AB = CD;\]
\[AA_{1} = DD_{1}.\]
\[Отсюда:\ \]
\[V_{\text{ABC}A_{1}B_{1}C_{1}} = \frac{1}{2}V_{парал} =\]
\[= \frac{1}{2} \bullet S_{AA_{1}BB_{1}} \bullet CH.\]
\[Что\ и\ требовалось\ доказать.\]