\[\boxed{\mathbf{522.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[BD_{1}\bot A_{1}C;\]
\[BD_{1} = 6\ см;\]
\[A_{1}C = 8\ см;\]
\[AB = 3\ см.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ A_{1}D_{1}CB - ромб:\]
\[BD_{1}\bot A_{1}C;\ \ \ \]
\[A_{1}B = CD_{1};\ \]
\[A_{1}D_{1} = BC.\]
\[Отсюда:\ \]
\[BO = OD_{1} = 3\ см;\]
\[A_{1}O = OC = 4\ см.\]
\[2)\ \mathrm{\Delta}A_{1}OB - прямоугольный:\]
\[A_{1}B = \sqrt{4^{2} + 3^{2}} = \sqrt{25} = 5\ см.\]
\[3)\ \mathrm{\Delta}A_{1}AB - прямоугольный:\]
\[AA_{1} = \sqrt{25 - 3^{2}} = \sqrt{16} = 4\ см.\]
\[4)\ \mathrm{\Delta}A_{1}AC - прямоугольный:\]
\[AC = \sqrt{8^{2} - 16} = \sqrt{48} = 4\sqrt{3}\ см.\]
\[5)\ По\ теореме\ косинусов\ \]
\[(в\ \mathrm{\Delta}ABC):\]
\[\left( 4\sqrt{3} \right)^{2} =\]
\[= 3^{2} + 5^{2} - 2 \bullet 3 \bullet 5\cos{\angle B};\]
\[\cos{\angle B} = - \frac{7}{15}.\]
\[\sin{\angle B} = \sqrt{1 - \cos^{2}{\angle B}} =\]
\[= \sqrt{1 - \frac{49}{225}} = \frac{\sqrt{176}}{15}.\]
\[6)\ S_{осн} = AB \bullet BC \bullet \sin{\angle B} =\]
\[= 3 \bullet 5 \bullet \frac{\sqrt{176}}{15} = \sqrt{176}\ см^{2}.\]
\[7)\ V = S_{осн} \bullet AA_{1} = \sqrt{176} \bullet 4 =\]
\[= 4 \bullet \sqrt{16 \bullet 11} = 16\sqrt{11}\ см^{3}.\]
\[Ответ:\ \ V = 6\sqrt{11}\ см^{3}.\]