\[\boxed{\mathbf{521.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AB = 3\sqrt{2}\ см;\]
\[AD = 7\ см;\]
\[\angle DAB = 45{^\circ};\]
\[\angle BDB_{1} = 45{^\circ}.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ По\ теореме\ косинусов\ \]
\[(в\ \mathrm{\Delta}ABD):\]
\[BD^{2} =\]
\[= AD^{2} + AB^{2} - 2AD \bullet AB \bullet \cos{\angle A};\]
\[BD^{2} =\]
\[= 49 + 18 - 2 \bullet 7 \bullet 3\sqrt{2} \bullet \frac{1}{\sqrt{2}} =\]
\[= 49 + 18 - 42 = 25;\]
\[BD = \sqrt{25} = 5\ см.\]
\[2)\ \mathrm{\Delta}BB_{1}D - прямоугольный:\]
\[\angle B_{1} = 90{^\circ} - 45{^\circ} = 45{^\circ};\]
\[BB_{1} = BD = 5\ см.\]
\[3)\ S_{осн} = AD \bullet AB \bullet \sin{\angle BAD} =\]
\[= 7 \bullet 3\sqrt{2} \bullet \frac{1}{\sqrt{2}} = 21\ см^{2}.\]
\[4)\ V = S_{осн} \bullet BB_{1} = 21 \bullet 5 =\]
\[= 105\ см^{3}.\]
\[Ответ:\ \ V = 105\ см^{3}.\]