\[\boxed{\mathbf{383.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[сфера;\]
\[OO_{1} = O_{1}N = \frac{R}{2};\]
\[AO_{1} = O_{1}B = r;\]
\[\mathrm{\Delta}AOO_{1} - прямоугольный.\]
\[Решение.\]
\[\textbf{а)}\ r - радиус\ полученного\ \]
\[сечения.\]
\[По\ теореме\ Пифагора:\]
\[r = \sqrt{R^{2} - OO_{1}^{2}} = \sqrt{R^{2} - \left( \frac{R}{2} \right)^{2}} =\]
\[= \frac{R\sqrt{3}}{2}.\]
\[\textbf{б)}\ l = OA = R;\]
\[S_{бок} = \pi rl = \pi rR = \pi \cdot \frac{R\sqrt{3}}{2} \cdot R =\]
\[= \frac{\pi R^{2}\sqrt{3}}{2}.\]
\[Ответ:а)\ \frac{R\sqrt{3}}{2};\ \ б)\ \frac{\pi R^{2}\sqrt{3}}{2}.\]