\[\boxed{\text{844\ (844).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ C_{9}^{4} = \frac{9!}{(9 - 4)!} = \frac{9!}{5!} =\]
\[= 6 \cdot 7 \cdot 8 \cdot 9 = 3024\ способа.\]
\[\textbf{б)}\ C_{9}^{3} = \frac{9!}{(9 - 3)!} = \frac{9!}{6!} =\]
\[= 7 \cdot 8 \cdot 9 = 504\ способа.\]
\[\boxed{\text{844.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[x^{8} + x^{6} - 4x^{4} + x^{2} + 1 =\]
\[= x^{8} - 2x^{4} + 1 + x^{6} - 2x^{4} + x^{2} =\]
\[= \left( x^{4} - 1 \right)^{2} + x^{6} - 2x^{4} + x^{2} =\]
\[= \left( x^{4} - 1 \right)^{2} + x^{2}\left( x^{4} - 2x^{2} + 1 \right) =\]
\[= \left( x^{4} - 1 \right)^{2} + x^{2}\left( x^{2} - 1 \right)^{2},\]
\[\left( x^{4} - 1 \right)^{2} + x^{2}\left( x^{2} - 1 \right)^{2} \geq 0 \Longrightarrow\]
\[\Longrightarrow при\ любом\ x.\]