\[\boxed{\text{782\ (782).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{a + b}{a^{2} + ab + b^{2}} \cdot \frac{a^{3} - b^{3}}{b^{2} - a^{2}}\ :\left( 1 - \frac{1 + b}{b} \right) =\]
\[= - 1\ :\left( - \frac{1}{b} \right) = b\]
\[1)\ \frac{a + b}{a^{2} + ab + b^{2}} \cdot \frac{a^{3} - b^{3}}{b^{2} - a^{2}} =\]
\[= \frac{a - b}{b - a} = - 1;\]
\[2)1 - \frac{1 + b}{b} = \frac{b - 1 - b}{b} = - \frac{1}{b}\text{.\ }\]
\[\boxed{\text{782.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[a_{1} = 48,5;\ \ d = - 1,3:\]
\[a_{n} = a_{1} + d(n - 1)\]
\[3 = 48,5 - 1,3 \cdot (n - 1)\]
\[48,5 - 1,3n + 1,3 = 3\]
\[1,3n = 49,8 - 3\]
\[1,3n = 46,8\]
\[n = 468\ :13\]
\[n = 36.\]
\[Ответ:36\ член.\]
\[a_{n} = - 3,5?\]
\[48,5 - 1,3n + 1,3 = - 3,5\]
\[1,3n = 49,8 + 3,5\]
\[n = 53,3\ :1,3\]
\[n = 41.\]
\[Ответ:является.\]
\[a_{n} = 15 - ?\]
\[48,5 - 1,3n + 1,3 = 15\]
\[1,3n = 49,8 - 15\]
\[n = 34,8\ :1,3\]
\[n = 26,76\ldots\]
\[Ответ:не\ является.\]