\[\boxed{\text{661\ (661).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\left\{ \begin{matrix} 3x - y \geq 0 \\ y - 5 \geq 0\ \ \\ \end{matrix} \right.\ \]
\[\]
\[Система\ неравенств\ задает\ на\ координатной\ прямой\ острый\ угол.\]
\[\boxed{\text{661.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \frac{x \cdot x^{2} \cdot x^{3} \cdot .. \cdot x^{n}}{x \cdot x^{3} \cdot x^{5} \cdot .. \cdot x^{2n - 1}}\]
\[1)\ a_{1} = 1,\ \ a_{2} = 2,\ \ d = 1,\]
\[S_{n} = \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{2 + n - 1}{2} \cdot n = \frac{n(n + 1)}{2};\]
\[2)\ \ 1 + 3 + 5 + .. + 2n - 1,\]
\[a_{1} = 1,\ \ a_{2} = 3,\ \ d = 2,\]
\[a_{k} = a_{1} + d(k - 1) =\]
\[= 1 + 2k - 2 = 2k - 1,\]
\[k = n,\]
\[S_{k} = \frac{a_{1} + a_{k}}{2} \cdot k =\]
\[= \frac{2a_{1} + d(n - 1)}{2} \cdot n = n^{2},\]
\[\frac{x \cdot x^{2} \cdot x^{3} \cdot .. \cdot x^{n}}{x \cdot x^{3} \cdot x^{5} \cdot .. \cdot x^{2n - 1}} =\]
\[= \frac{x^{\frac{2n² + n}{2}}}{x^{n²}} = x^{\frac{n² + n - 2n²}{2}} = x^{\frac{n - n²}{n}};\]
\[\textbf{б)}\ \frac{x^{2} \cdot x^{4} \cdot x^{6}.. \cdot x^{2n}}{x \cdot x^{2} \cdot x^{3} \cdot .. \cdot x^{n}} =\]
\[= \frac{x^{2 + 4 + 6 + .. + 2n}}{x^{1 + 2 + 3 + .. + n}} =\]
\[= \frac{\left( x^{1 + 2 + 3 + .. + n} \right)^{2}}{x^{1 + 2 + 3 + .. + n}} = x^{1 + 2 + 3 + .. + n} =\]
\[= x^{\frac{n(n + 1)}{2}.}\]