\[\boxed{\text{609}\text{\ (609)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x_{1} = 1,\ x_{2} = 2,\ \ldots,\ x_{150} = 150;\]
\[S_{150} = \frac{(x_{1} + x_{n})}{2} \cdot n = \frac{1 + 150}{2} \cdot 150 = 11\ 325;\ \]
\[\textbf{б)}\ x_{1} = 20,\ \ x_{2} = 21,\ \ x_{n} = 19 + n,\ \ x_{n} = 120;\]
\[19 + n = 120,\ \ n = 101,\]
\[S_{101} = \frac{(x_{1} + x_{n})}{2} \cdot n = \frac{20 + 120}{2} \cdot 101 = 7070;\]
\[\textbf{в)}\ x_{1} = 4,\ \ x_{2} = 8,\ \ x_{n} = 4n,\ \ x_{n} = 300,\ \ \]
\[300 = 4n,\ \ n = 75,\]
\[S_{75} = \frac{(x_{1} + x_{n})}{2} \cdot n = \frac{4 + 300}{2} \cdot 75 = 11\ 400;\]
\[\textbf{г)}\ x_{1} = 7,\ \ x_{2} = 14,\ \ x_{n} = 7n,\ \ 7n \leq 130,\ \ n \leq 18\frac{4}{7};\]
\[n = 18,\ \ x_{n} = 126,\ \ S_{18} = \frac{7 + 126}{2} \cdot 18 = 1197.\]
\[\boxed{\text{609.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[Так\ как\ стороны\ вписанных\ \]
\[треугольников\ являются\ \]
\[средними\ линиями,\ очевидно,\]
\[\ что\ x_{n} = \frac{1}{2}x_{n - 1};\ \ \ \ \]
\[p_{n} = 3x_{n} = 3 \cdot \frac{1}{2} \cdot x_{n - 1} =\]
\[= \frac{1}{2} \cdot p_{n - 1}.\]
\[Периметры\ треугольников\ \]
\[образуют\ геометрическую\ \]
\[прогрессию\ со\ знаменателем\ \]
\[\ q = \frac{1}{2},\ \ p_{1} = 3 \cdot 16 = 48\ \]
\[p_{8} = p_{1} \cdot q^{7} = \frac{48}{2^{7}} = \frac{3 \cdot 2^{4}}{2^{7}} =\]
\[= \frac{3}{2^{3}} = \frac{3}{8}\ см.\]
\[Ответ:\ \frac{3}{8}\ см.\]