\[\boxed{\text{524}\text{\ (524)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} - y + 11 = 0 \\ y + x^{2} = 4\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2} + 11 \\ y = 4 - x^{2}\text{\ \ } \\ \end{matrix} \right.\ \]
\[нет\ решений:\]
\[\textbf{б)}\ \left\{ \begin{matrix} (x + 3)^{2} + (y + 4)^{2} = 1 \\ (x - 2)^{2} + (y - 1)^{2} = 4 \\ \end{matrix} \right.\ \]
\[нет\ решений:\]
\[\textbf{в)}\ \left\{ \begin{matrix} y = |x|\text{\ \ \ \ \ \ \ \ \ } \\ \frac{1}{2}x^{3} - y = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} y = |x|\text{\ \ } \\ y = \frac{1}{2}x^{3} \\ \end{matrix} \right.\ \]
\[два\ решения:\]
\[\boxed{\text{524.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ y\left( x^{2} + y^{2} - 1 \right) \geq 0\]
\[\textbf{б)}\ x\left( x^{2} - y \right) \leq 0\]