\[\boxed{\text{523}\text{\ (523)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} y + x + x^{2} = 0 \\ x - y = 10\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = - x^{2} - x \\ y = x - 10\ \ \ \\ \end{matrix} \right.\ \]
\[( - 4,3;\ - 14,3);\ \ (2,3; - 7,7).\]
\[\textbf{б)}\ \left\{ \begin{matrix} (x - 2)^{2} + y^{2} = 9 \\ y = x^{2} - 4x + 4\ \ \ \\ \end{matrix} \right.\ \]
\[(0,4;2,5);\ \ (3,6;2,5).\]
\[\textbf{в)}\ \ \left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ y = 2x^{2} - 14\ \\ \end{matrix} \right.\ \]
\[(3;4);\ \ ( - 3;4);\ \ ( - 2,2;\ - 4,5);\ \ \]
\[(2,2;4,5).\]
\[\textbf{г)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 10 \\ xy = 3\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x^{2} + y^{2} = 10 \\ y = \frac{3}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[( - 3;\ - 1);\ \ ( - 1;\ - 3);\ \ (1;3);\ \]
\[(3;1).\]
\[\textbf{д)}\ \left\{ \begin{matrix} x + y = 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x + 1)^{2} + y^{2} = 81 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\(\left\{ \begin{matrix} y = 8 - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x + 1)^{2} + y^{2} = 81 \\ \end{matrix} \right.\ \)
\[( - 1;9);\ \ (8;0).\]
\[\textbf{е)}\ \left\{ \begin{matrix} y = - x^{2} + 4 \\ y = |x|\text{\ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[( - 1,6;1,6);\ \ (1,6;1,6).\]
\[\boxed{\text{523.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ k = 2,\ \ b = - 3;\]
\[\textbf{б)}\ k = 1,\ \ b = 0.\]