\[\boxed{\text{418\ (418).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\left\{ \begin{matrix} x^{2} + y^{2} = 100 \\ y = \frac{1}{2}x^{2} - 10\ \ \\ \end{matrix} \right.\ \]
\[x^{2} + y^{2} = 100\]
\[окружность\ с\ центром\ (0;0)\ и\ \]
\[радиусом\ равным\ 10.\]
\[y = \frac{1}{2}x^{2} - 10\]
\[парабола,\ ветви\ вверх.\]
\[Ответ:(0;\ - 10);\ \ ( - 6;8);(6;8).\]
\[\boxed{\text{418.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ y = 5x - 7;\ \ y = 3x + 1\]
\[5x - 7 = 3x + 1\]
\[5x - 3x = 1 + 7\]
\[2x = 8\]
\[x = 4.\]
\[y = 3x + 1 = 3 \cdot 4 + 1 = 13.\]
\[Ответ:(4;13).\]
\[\textbf{б)}\ y = - 3x - 2;\ \ y = 8x - 9\]
\[8x - 9 = - 3x - 2\]
\[8x + 3x = - 2 + 9\]
\[11x = 7\]
\[x = \frac{7}{11}.\]
\[y = - 3x - 2 = - 3 \cdot \frac{7}{11} - 2 =\]
\[= - \frac{21}{11} - 2 = - 1\frac{10}{11} - 2 =\]
\[= - 3\frac{10}{11}.\]
\[Ответ:\left( \frac{7}{11};\ - 3\frac{10}{11} \right).\]
\[\textbf{в)}\ y = 0,4x - 5;\ \ y = - 0,1x - 3\]
\[0,4x - 5 = - 0,1x - 3\]
\[0,4x + 0,1x = - 3 + 5\]
\[0,5x = 2\]
\[x = 4.\]
\[y = - 0,1x - 3 = - 0,1 \cdot 4 - 3 =\]
\[= - 0,4 - 3 = - 3,4.\]
\[Ответ:(4; - 3,4).\]
\[\textbf{г)}\ y = 23x - 6;\ \ y = - 2x + 9\]
\[23x - 6 = - 2x + 9\]
\[23x + 2x = 9 + 6\]
\[25x = 15\]
\[x = \frac{15}{25} = \frac{3}{5}\]
\[x = 0,6.\]
\[y = - 2x + 9 = - 2 \cdot 0,6 + 9 =\]
\[= - 1,2 + 9 = 7,8.\]
\[Ответ:(0,6;7,8).\]
\[\textbf{д)}\ y = 98x;\ \ \ y = - 102x - 3\]
\[98x = - 102x - 3\]
\[98x + 102x = - 3\]
\[200x = - 3\]
\[x = - \frac{3}{200} = - \frac{15}{1000}\]
\[x = - 0,015.\]
\[y = 98x = 98 \cdot \left( - \frac{3}{200} \right) =\]
\[= - \frac{49 \cdot 3}{100} = - \frac{147}{100} = - 1,47.\]
\[Ответ:( - 0,015;\ - 1,47).\]
\[\textbf{е)}\ y = - 3;\ \ y = 36x + 1\]
\[36x + 1 = - 3\]
\[36x = - 4\]
\[x = - \frac{4}{36} = - \frac{1}{9}.\]
\[Ответ:\left( - \frac{1}{9};\ - 3 \right).\]