\[\boxed{\text{417\ (417).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ y = x^{2} - 6\ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + y^{2} = 25\]
\[окружность\ с\ центром\ (0;0)\ и\ \]
\[радиусом\ равным\ 5.\]
\[y = x^{2} - 6\]
\[парабола,\ ветви\ вверх.\]
\[x_{1} \approx 3,2;\ y_{1} \approx 3,9;\]
\[x_{2} \approx - 3,2;\ y_{2} \approx 3,9;\]
\[x_{3} \approx 1,1;\ \ \ y_{3} \approx 4,9;\]
\[x_{4} \approx - 1,1;\ \ \ \ y_{4} \approx 4,9.\]
\[Ответ:(3,2;3,9);\ \ ( - 3,2;3,9);\ \ \]
\[(1,1;4,9);\ \ ( - 1,1;4,9).\]
\[\boxed{\text{417.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[B(2; - 1);\ \ y = f(x).\]
\[\textbf{а)}\ f(x) = kx + 1\]
\[- 1 = 2k + 1\]
\[2k = - 2\]
\[k = - 1.\]
\[\textbf{б)}\ f(x) = 2x + k\]
\[- 1 = 4 + k\]
\[k = - 5.\]